Abstract

We consider a Cauchy problem for the Helmholtz equation at a fixed frequency. The problem is severely ill posed in the sense that the solution (if it exists) does not depend continuously on the data. We present a wavelet method to stabilize the problem. Some error estimates between the exact solution and its approximation are given, and numerical tests verify the efficiency and accuracy of the proposed method.

1. Introduction

The Helmholtz equation is often used to approximate model wave propagation in inhomogeneous media. The demand for reliable numerical solutions to such type of problems is frequently encountered in geophysical and optoelectronic applications [1, 2]. In geophysical applications, for example, wave propagation simulations are used for the development of acoustic imaging techniques for gaining knowledge about geophysical structures deep within the Earthโ€™s subsurface [3]. In optoelectronics, the determination of a radiation field surrounding a source of radiation (e.g., a light emitting diode) is also a frequently occurring problem [4]. In many engineering problems, the boundary conditions are often incomplete, either in the form of underspecified and overspecified boundary conditions on different parts of the boundary or the solution is prescribed at some internal points in the domain. These so-called Cauchy problems are inverse problems, and it is well known that they are generally ill posed in the sense of Hadamard [5]. However, the Cauchy problem suffers from the nonexistence and instability of the solution.

In this paper we consider the Cauchy problem for the Helmholtz equation in a โ€œstripโ€ 0<๐‘ฅ<1 as follows:ฮ”๐‘ข(๐‘ฅ,๐‘ฆ)+๐‘˜2๐‘ข(๐‘ฅ,๐‘ฆ)=0,๐‘ฅโˆˆ(0,1),๐‘ฆโˆˆโ„๐‘›,๐‘›โ‰ฅ1,๐‘ข(0,๐‘ฆ)=๐‘”(๐‘ฆ),๐‘ฆโˆˆโ„๐‘›,๐‘ข๐‘ฅ(0,๐‘ฆ)=0,๐‘ฆโˆˆโ„๐‘›,(1.1) where ฮ”=๐œ•2/๐œ•๐‘ฅ2+โˆ‘๐‘›๐‘–=1๐œ•2/๐œ•๐‘ฆ2๐‘– is an ๐‘›+1 dimensional Laplace operator. We want to determine the solution ๐‘ข(๐‘ฅ,๐‘ฆ) for 0<๐‘ฅโ‰ค1 from the data ๐‘”(๐‘ฆ). Due to the importance of its application, this problem has been studied by many researchers, for example, DeLillo et al. [6, 7], Jin and Zheng [8], Johansson and Martin [9], and Marin et al. [10โ€“14].

Let ๐’ฎ be the Schwartz space over โ„๐‘›, and let ๐’ฎโ€ฒ be its dual (the space of tempered distributions). Let ๎๐‘“ denote the Fourier transform of function ๐‘“(๐‘ฆ)โˆˆ๐’ฎ defined by๎1๐‘“(๐œ‰)=(2๐œ‹)๐‘›/2๎€œโ„๐‘›๐‘’โˆ’๐‘–๐œ‰โ‹…๐‘ฆ๎€ท๐œ‰๐‘“(๐‘ฆ)๐‘‘๐‘ฆ,๐œ‰=1,โ€ฆ,๐œ‰๐‘›๎€ธ๎€ท๐‘ฆ,๐‘ฆ=1,โ€ฆ,๐‘ฆ๐‘›๎€ธ,(1.2) while the Fourier transform of a tempered distribution ๐‘“โˆˆ๐’ฎโ€ฒ is defined by๎‚€๎๎‚=๎‚€๎๐œ™๎‚๐‘“,๐œ™๐‘“,,โˆ€๐œ™โˆˆ๐’ฎ.(1.3) In this paper, we will consider functions depending on the variables ๐‘ฅโˆˆ[0,1], ๐‘ฆโˆˆโ„๐‘›.

For ๐‘ โˆˆโ„, the Sobolev space ๐ป๐‘ (โ„๐‘›) consists of all tempered distributions ๐‘“(๐‘ฆ)โˆˆ๐’ฎโ€ฒ, for which ๎๐‘“(๐œ‰)(1+|๐œ‰|2)๐‘ /2 is a function in ๐ฟ2(โ„๐‘›). The norm on this space is given byโ€–๐‘“โ€–๐ป๐‘ ๎‚ต๎€œโˆถ=โ„๐‘›||๎||๐‘“(๐œ‰)2||๐œ‰||(1+2)๐‘ ๎‚ถ๐‘‘๐œ‰1/2.(1.4)

We assume there exists a unique solution ๐‘ข(๐‘ฅ,๐‘ฆ) of problem (1.1), which satisfies the problem in the classical sense and ๐‘”(โ‹…), ๐‘ข(๐‘ฅ,โ‹…)โˆˆ๐ฟ2(โ„๐‘›). Applying the Fourier transform technique to problem (1.1) with respect to the variable ๐‘ฆ yields the following problem in the frequency space:ฬ‚๐‘ข๐‘ฅ๐‘ฅ๎‚€๐‘˜(๐‘ฅ,๐œ‰)+2โˆ’||๐œ‰||2๎‚ฬ‚๐‘ข(๐‘ฅ,๐œ‰)=0,๐‘ฅโˆˆ(0,1),๐œ‰โˆˆโ„๐‘›,๐‘›โ‰ฅ1,ฬ‚๐‘ข(0,๐œ‰)=ฬ‚๐‘”(๐œ‰),๐œ‰โˆˆโ„๐‘›,ฬ‚๐‘ข๐‘ฅ(0,๐œ‰)=0,๐œ‰โˆˆโ„๐‘›.(1.5) It is easy to obtain the solution of problem (1.5) (if exists) has the form๎‚ต๐‘ฅ๎”ฬ‚๐‘ข(๐‘ฅ,๐œ‰)=cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถฬ‚๐‘”(๐œ‰),(1.6) or equivalently, the solution of problem (1.1) has the representation1๐‘ข(๐‘ฅ,๐‘ฆ)=(2๐œ‹)๐‘›/2๎€œโ„๐‘›๐‘’๐‘–๐œ‰โ‹…๐‘ฆ๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถฬ‚๐‘”(๐œ‰)๐‘‘๐œ‰.(1.7) Since โˆšcosh(๐‘ฅ|๐œ‰|2โˆ’๐‘˜2) increases rapidly with exponential order as |๐œ‰|โ†’โˆž, the Fourier transform of the exact data ๐‘”(๐‘ฆ) must decay rapidly. However, in practice, the data at ๐‘ฅ=0 is often obtained on the basis of reading of physical instrument which is denoted by ๐‘”๐‘š. We assume that ๐‘”(โ‹…) and ๐‘”๐‘š(โ‹…) satisfyโ€–โ€–๐‘”(โ‹…)โˆ’๐‘”๐‘šโ€–โ€–(โ‹…)๐ป๐‘Ÿโ‰ค๐›ฟ.(1.8) Since ๐‘”๐‘š(โ‹…) belong to ๐ฟ2(โ„๐‘›)โŠ‚๐ป๐‘Ÿ(โ„๐‘›) for ๐‘Ÿโ‰ค0, ๐‘Ÿ should not be positive. A small perturbation in the data ๐‘”(๐‘ฆ) may cause a dramatically large error in the solution ๐‘ข(๐‘ฅ,๐‘ฆ) for 0<๐‘ฅโ‰ค1. Hence problem (1.1) is severely ill posed and its numerical simulation is very difficult. It is obvious that the ill-posedness of the problem is caused by the perturbation of high frequencies.

By (1.6) we know๎‚ต๎”ฬ‚๐‘ข(1,๐œ‰)=cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถฬ‚๐‘”(๐œ‰).(1.9) Since the convergence rates can only be given under a priori assumptions on the exact solution [15], we will formulate such an a priori assumption in terms of the exact solution at ๐‘ฅ=1 by consideringโ€–๐‘ข(1,โ‹…)โ€–๐ป๐‘ โ‰ค๐ธ.(1.10)

Meyer wavelets are special because, unlike most other wavelets, they have compact support in the frequency domain but not in the time domain (however, they decay very fast). The wavelet methods have been used to solve one-dimensional heat conduction problems [16, 17] and noncharacteristic Cauchy problem for parabolic equation in one-dimensional [18] and multidimensional [19] cases, and so forth. In this paper we propose a similar wavelet method as suggested in [19] to the problem (1.1).

The paper is organized as follows. In Section 2 we describe the Meyer wavelets and discuss the properties that make them useful for solving ill-posed problems. Some error estimates between the exact solution and its approximation as well as the choice of the regularization parameter are given in Section 3. Finally, in Section 4 numerical tests verify the efficiency and accuracy of the proposed method.

2. The Meyer Wavelets

In the present paper let ฮฆ be Meyerโ€™s orthonormal scaling function in ๐‘› dimensions. This function is constructed from the one-dimensional scaling functions in the following way. Let ๐œ™(๐‘ฅ) and ๐œ“(๐‘ฅ) be the Meyer scaling and wavelet function in one dimension defined by their Fourier transform in [20] which satisfy๎๎‚ƒโˆ’4supp๐œ™=34๐œ‹,3๐œ‹๎‚„,๎‚ƒโˆ’8supp๎๐œ“=32๐œ‹,โˆ’3๐œ‹๎‚„โˆช๎‚ƒ23,83๐œ‹๎‚„.(2.1) It can be proved (cf. [20]) that the set of functions๐œ“๐‘—๐‘˜(๐‘ฅ)=2๐‘—/2๐œ“๎€ท2๐‘—๎€ธ๐‘ฅโˆ’๐‘˜,๐‘—,๐‘˜โˆˆโ„ค,(2.2) is an orthonormal basis of ๐ฟ2(โ„). Consequently, the MRA {๐‘‰๐‘—}๐‘—โˆˆโ„ค of Meyer is generated by๐‘‰๐‘—={๐œ™๐‘—๐‘˜,๐‘˜โˆˆโ„ค},๐œ™๐‘—๐‘˜โˆถ=2๐‘—/2๐œ™๎€ท2๐‘—๎€ธ๎‚€๎๐œ™๐‘ฅโˆ’๐‘˜,๐‘—,๐‘˜โˆˆโ„ค,supp๐‘—๐‘˜๎‚=๎‚†||๐œ‰||โ‰ค4๐œ‰;3๐œ‹2๐‘—๎‚‡.(2.3)

For the construction of an ๐‘›-dimensional MRA, we take tensor products of the spaces ๐‘‰๐‘— (see [21, 22]). Then the scaling function ฮฆ is given byฮฆ(๐‘ฅ)=๐‘›๎‘๐‘˜=1๐œ™๎€ท๐‘ฅ๐‘˜๎€ธ,๐‘ฅโˆˆโ„๐‘›,(2.4) and any basis function ฮจ in ๐‘Š๐ฝ can be written in the formฮจ(๐‘ฅ)=2๐‘›๐ฝ/2๐œ“๎€ท2๐ฝ๐‘ฅ๐‘–โˆ’๐‘˜๐‘–๎€ธโ‹…๎‘๐‘šโ‰ ๐‘–๐œƒ๐‘š๎€ท2๐ฝ๐‘ฅ๐‘šโˆ’๐‘˜๐‘š๎€ธ,๐‘ฅโˆˆโ„๐‘›,(2.5) where ๐‘˜โˆˆโ„ค๐‘›, and for any ๐‘šโˆˆ{1,โ€ฆ,๐‘›}, ๐œƒ๐‘š stands for ๐œ™ or ๐œ“. Hence we obtain from (2.1) that๎‚€๎ฮฆ๎‚=๎‚ƒโˆ’4supp34๐œ‹,3๐œ‹๎‚„๐‘›,๎(2.6)๐‘“(๐œ‰)=0forโ€–๐œ‰โ€–โˆžโ‰ค23๐œ‹2๐ฝ,๐‘“โˆˆ๐‘Š๐ฝ,๐ฝโˆˆโ„•.(2.7) The orthogonal projection on the space ๐‘‰๐ฝ is defined by๐‘ƒ๐ฝ๎“๐‘“โˆถ=๐‘˜โˆˆโ„ค๐‘›๎€ท๐‘“,ฮฆ๐ฝ,๐‘˜๎€ธฮฆ๐ฝ,๐‘˜,(2.8) while ๐‘„๐ฝ๐‘“ denotes the orthogonal projection of a function ๐‘“ on the wavelet space ๐‘Š๐ฝ with ๐‘‰๐ฝ+1=๐‘‰๐ฝโŠ•๐‘Š๐ฝ. (In many contexts one will find more than one detailed space ๐‘Š๐ฝ, that is, ๐‘‰๐ฝ+1=๐‘‰๐ฝโŠ•๐‘Š1,๐ฝโŠ•๐‘Š2,๐ฝโŠ•โ‹ฏ. Here, the space ๐‘Š๐ฝ is simply defined as the orthogonal complement of ๐‘‰๐ฝ in ๐‘‰๐ฝ+1).

Letฮฉ๐ฝโˆถ=2๐ฝ๎‚ƒโˆ’232๐œ‹,3๐œ‹๎‚„๐‘›.(2.9) Setting ฮ“๐ฝโˆถ=โ„๐‘›โงตฮฉ๐ฝ, together with (2.6), it follows for ๐ฝโˆˆโ„• that๎‚ฟ๐‘ƒ๐ฝ๐‘“(๐œ‰)=0for๐œ‰โˆˆฮ“๐ฝ+1,๎€ท๎€ท๐ผโˆ’๐‘ƒ๐ฝ๎€ธ๐‘“๎€ธฬ‚๎ƒณ๐‘„(๐œ‰)=๐ฝ๐‘“(๐œ‰)for๐œ‰โˆˆฮฉ๐ฝ+1.(2.10) We introduce the operator ๐‘€๐ฝ which is defined by the equation๎ƒณ๐‘€๐ฝ๎€ท๐‘“โˆถ=1โˆ’๐œ’๐ฝ๎€ธ๎๐‘“,๐ฝโˆˆโ„•,(2.11) where ๐œ’๐ฝ denotes the characteristic function of the cube ฮฉ๐ฝ. From (2.7) it follows that any basis function ฮจ in ๐‘Š๐‘—, ๐‘—โ‰ฅ๐ฝ, satisfies๎ฮจ(๐œ‰)=0,๐œ‰โˆˆฮฉ๐ฝ,(2.12) and we obtain๎‚€๎๎ฮจ๎‚=๎‚€๎€ท(๐‘“,ฮจ)=๐‘“,1โˆ’๐œ’๐ฝ๎€ธ๎๎ฮจ๎‚=๎€ท๐‘€๐‘“,๐ฝ๎€ธ๐‘“,ฮจ.(2.13) And it follows for ๐ฝโˆˆโ„• that๐‘„๐ฝ=๐‘„๐ฝ๐‘€๐ฝ,๐ผโˆ’๐‘ƒ๐ฝ=๎€ท๐ผโˆ’๐‘ƒ๐ฝ๎€ธ๐‘€๐ฝ.(2.14)

3. Wavelet Regularization and Error Estimates

We list the following two lemmas given in [19, 23] which are useful to our proof.

Lemma 3.1 (see [19, 23]). Let {๐‘‰๐ฝ}๐ฝโˆˆโ„ค be an m-regular MRA, and let ๐‘Ÿ,๐‘ โˆˆโ„ be such that โˆ’๐‘š<๐‘Ÿ<๐‘ <๐‘š. Then for each function ๐‘“โˆˆ๐ป๐‘ (โ„๐‘›) and ๐ฝโˆˆโ„•, the following inequality holds: โ€–โ€–๐‘“โˆ’๐‘ƒ๐ฝ๐‘“โ€–โ€–๐ป๐‘Ÿโ‰ค๐ถ12โˆ’๐ฝ(๐‘ โˆ’๐‘Ÿ)โ€–๐‘“โ€–๐ป๐‘Ÿ.(3.1)

Lemma 3.2 (see [19]). Let {๐‘‰๐ฝ}๐ฝโˆˆโ„ค be Meyerโ€™s (tensor-) MRA, and suppose ๐ฝโˆˆโ„•, ๐‘Ÿโˆˆโ„. Then for all ๐‘“โˆˆ๐‘‰๐ฝ, one has โ€–โ€–โ€–๐œ•๐‘™๐œ•๐‘ฅ๐‘™๐‘–๐‘“โ€–โ€–โ€–๐ป๐‘Ÿโ‰ค๐ถ22(๐ฝโˆ’1)๐‘™โ€–๐‘“โ€–๐ป๐‘Ÿ,๐‘–=1,โ€ฆ,๐‘›,๐‘™โˆˆโ„•.(3.2)

Define an operator ๐‘‡๐‘ฅโˆถ๐‘”(๐‘ฆ)โ†ฆ๐‘ข(๐‘ฅ,๐‘ฆ) by (1.6), that is,๐‘‡๐‘ฅ๐‘”=๐‘ข(๐‘ฅ,๐‘ฆ),0<๐‘ฅโ‰ค1,(3.3) or equivalently,๎‚ฟ๐‘‡๐‘ฅ๎‚ต๐‘ฅ๎”๐‘”(๐œ‰)=cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถฬ‚๐‘”(๐œ‰),0<๐‘ฅโ‰ค1.(3.4) Then we have

Theorem 3.3. Let {๐‘‰๐ฝ}๐ฝโˆˆโ„ค be Meyerโ€™s MRA and suppose ๐‘Ÿโˆˆโ„ and ๐ฝโˆˆโ„• which satisfies 2๐ฝ>๐‘˜, 0โ‰ค๐‘ฅโ‰ค1. Then for all ๐‘“โˆˆ๐‘‰๐ฝ, one has โ€–โ€–๐‘‡๐‘ฅ๐‘“โ€–โ€–๐ป๐‘Ÿโ‰ค๎‚€๐ถ5๐‘’๐‘ฅโˆš22(๐ฝโˆ’1)โˆ’๐‘˜2๎‚+1โ€–๐‘“โ€–๐ป๐‘Ÿ.(3.5)

Proof. For ๐‘“โˆˆ๐‘‰๐ฝ, by definition (1.4) and formula (3.4), from Lemma 3.2, we have โ€–โ€–๐‘‡๐‘ฅ๐‘“โ€–โ€–๐ป๐‘Ÿ=๎ƒฉ๎€œโ„๐‘›||||๎”cosh(๐‘ฅ||๐œ‰||2โˆ’๐‘˜2)๎๐‘“||||2๎‚€||๐œ‰||1+2๎‚๐‘Ÿ๎ƒช๐‘‘๐œ‰1/2โ‰คโŽ›โŽœโŽœโŽœโŽœโŽœโŽ๎€œ|๐œ‰|>๐‘˜||||||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ๎€ท๐‘ฅ||๐œ‰||๎€ธ๎€ท๐‘ฅ||๐œ‰||๎€ธ๎๐‘“||||||||coshcosh2๎‚€||๐œ‰||1+2๎‚๐‘ŸโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐‘‘๐œ‰1/2+๎ƒฉ๎€œ|๐œ‰|โ‰ค๐‘˜||||๎‚ต๐‘ฅ๎”cos๐‘˜2โˆ’||๐œ‰||2๎‚ถ๎๐‘“||||2๎‚€||๐œ‰||1+2๎‚๐‘Ÿ๎ƒช๐‘‘๐œ‰1/2โ‰คsup๐œ‰โˆˆฮฉ๐ฝ+1||||||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ๎€ท๐‘ฅ||๐œ‰||๎€ธ||||||||๎‚ต๎€œcosh|๐œ‰|>๐‘˜||๎€ท๐‘ฅ||๐œ‰||๎€ธ๎๐‘“||cosh2๎‚€||๐œ‰||1+2๎‚๐‘Ÿ๎‚ถ๐‘‘๐œ‰1/2+โ€–๐‘“โ€–๐ป๐‘Ÿโ‰ค2sup๐œ‰โˆˆฮฉ๐ฝ+1๐‘’โˆš๐‘ฅ(|๐œ‰|2โˆ’๐‘˜2โˆ’|๐œ‰|)โŽ›โŽœโŽœโŽ๎€œ|๐œ‰|>๐‘˜|||||โˆž๎“๐‘™=0๐‘ฅ2๐‘™(2๐‘™)!|๐œ‰|2๐‘™๎๐‘“|||||2๎‚€||๐œ‰||1+2๎‚๐‘ŸโŽžโŽŸโŽŸโŽ ๐‘‘๐œ‰1/2+โ€–๐‘“โ€–๐ป๐‘Ÿโ‰ค2๐ถ3๐‘’โˆš๐‘ฅ(22(๐ฝโˆ’1)โˆ’๐‘˜2โˆ’2๐ฝโˆ’1)โˆž๎“๐‘™=0๐‘ฅ2๐‘™โ€–โ€–(2๐‘™)!(ฮ”๐‘ฆ)๐‘™๐‘“โ€–โ€–๐ป๐‘Ÿ+โ€–๐‘“โ€–๐ป๐‘Ÿโ‰ค๎ƒฉ๐ถ4๐‘’โˆš๐‘ฅ(22(๐ฝโˆ’1)โˆ’๐‘˜2โˆ’2๐ฝโˆ’1)โˆž๎“๐‘™=0๐‘ฅ2๐‘™(2๐‘™)!โ‹…๐‘›22(๐ฝโˆ’1)๐‘™๎ƒช+1โ€–๐‘“โ€–๐ป๐‘Ÿโ‰ค๎‚€๐ถ5๐‘’โˆš๐‘ฅ(22(๐ฝโˆ’1)โˆ’๐‘˜2โˆ’2๐ฝโˆ’1)๎€ทcosh๐‘ฅ2๐ฝโˆ’1๎€ธ๎‚+1โ€–๐‘“โ€–๐ป๐‘Ÿโ‰ค๎‚€๐ถ5๐‘’๐‘ฅโˆš22(๐ฝโˆ’1)โˆ’๐‘˜2๎‚+1โ€–๐‘“โ€–๐ป๐‘Ÿ.(3.6)

Since the Cauchy data are given inexactly by ๐‘”๐‘š, we need a stable algorithm to approximate the solution of (1.1). Our method is as follows. Consider the operator๐‘‡๐‘ฅ,๐ฝโˆถ=๐‘ƒ๐ฝ๐‘‡๐‘ฅ๐‘ƒ๐ฝ,(3.7) and show that it approximates ๐‘‡๐‘ฅ in a stable way for an appropriate choice for ๐ฝโˆˆโ„• depending on ๐›ฟ and ๐ธ. By the triangle inequality we knowโ€–โ€–๐‘‡๐‘ฅ๐‘”โˆ’๐‘‡๐‘ฅ,๐ฝ๐‘”๐‘šโ€–โ€–๐ป๐‘Ÿโ‰คโ€–โ€–(๐‘‡๐‘ฅโˆ’๐‘‡๐‘ฅ,๐ฝโ€–โ€–)๐‘”๐ป๐‘Ÿ+โ€–โ€–๐‘‡๐‘ฅ,๐ฝ๎€ท๐‘”โˆ’๐‘”๐‘š๎€ธโ€–โ€–๐ป๐‘Ÿ.(3.8)

From (1.8) and Theorem 3.3, the second term on the right-hand side of (3.8) satisfiesโ€–โ€–๐‘‡๐‘ฅ,๐ฝ๎€ท๐‘”โˆ’๐‘”๐‘š๎€ธโ€–โ€–๐ป๐‘Ÿ=โ€–โ€–๐‘ƒ๐ฝ๐‘‡๐‘ฅ๐‘ƒ๐ฝ๎€ท๐‘”โˆ’๐‘”๐‘š๎€ธโ€–โ€–๐ป๐‘Ÿโ‰คโ€–โ€–๐‘‡๐‘ฅ๐‘ƒ๐ฝ(๐‘”โˆ’๐‘”๐‘š)โ€–โ€–๐ป๐‘Ÿโ‰ค๎‚€๐ถ5๐‘’๐‘ฅโˆš22(๐ฝโˆ’1)โˆ’๐‘˜2๎‚+1๐›ฟ.(3.9)

For the first one we haveโ€–โ€–๎€ท๐‘‡๐‘ฅโˆ’๐‘‡๐‘ฅ,๐ฝ๎€ธ๐‘”โ€–โ€–๐ป๐‘Ÿโ‰คโ€–โ€–๎€ท๐ผโˆ’๐‘ƒ๐ฝ๎€ธ๐‘‡๐‘ฅ๐‘”โ€–โ€–๐ป๐‘Ÿ+โ€–โ€–๐‘ƒ๐ฝ๐‘‡๐‘ฅ๎€ท๐ผโˆ’๐‘ƒ๐ฝ๎€ธ๐‘”โ€–โ€–๐ป๐‘Ÿ.(3.10)

By Lemma 3.1, (1.9), (1.10), (2.14), and (3.4), we getโ€–โ€–๎€ท๐ผโˆ’๐‘ƒ๐ฝ๎€ธ๐‘‡๐‘ฅ๐‘”โ€–โ€–๐ป๐‘Ÿ=โ€–โ€–๎€ท๐ผโˆ’๐‘ƒ๐ฝ๎€ธ๐‘€๐ฝ๐‘‡๐‘ฅ๐‘”โ€–โ€–๐ป๐‘Ÿโ‰ค๐ถ12โˆ’๐ฝ(๐‘ โˆ’๐‘Ÿ)โ€–โ€–๐‘€๐ฝ๐‘‡๐‘ฅ๐‘”โ€–โ€–๐ป๐‘ =๐ถ12โˆ’๐ฝ(๐‘ โˆ’๐‘Ÿ)โŽ›โŽœโŽœโŽœโŽœโŽœโŽ๎€œฮ“๐ฝ||||||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ๎‚ต๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ||||||||๐‘ข(1,โ‹…)2๎‚€||๐œ‰||1+2๎‚๐‘ โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 1/2โ‰ค๐ถ12โˆ’๐ฝ(๐‘ โˆ’๐‘Ÿ)sup๐œ‰โˆˆฮ“๐ฝ||||||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ๎‚ต๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ||||||||โ‹…โ€–๐‘ข(1,โ‹…)โ€–๐ป๐‘ โ‰ค2๐ถ1๎‚ต๎‚€32๐œ‹2๐ฝ๎‚2โˆ’๐‘˜2๎‚ถโˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’๎”โˆ’(1โˆ’๐‘ฅ)((2/3)๐œ‹2๐ฝ)2โˆ’๐‘˜2๐ธโ‰ค2๐ถ1๎€ท22๐ฝโˆ’๐‘˜2๎€ธโˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆšโˆ’(1โˆ’๐‘ฅ)22๐ฝโˆ’๐‘˜2๐ธ.(3.11) On the other hand, due to (2.10), we knowโ€–โ€–๐‘ƒ๐ฝ๐‘‡๐‘ฅ๎€ท๐ผโˆ’๐‘ƒ๐ฝ๎€ธ๐‘”โ€–โ€–๐ป๐‘Ÿโ‰คโ€–โ€–๐‘‡๐‘ฅ๎€ท๐ผโˆ’๐‘ƒ๐ฝ๎€ธ๐‘”โ€–โ€–๐ป๐‘Ÿโ‰ค๎ƒฉ๎€œฮฉ๐ฝ+1||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ๎€ท๐‘„๐ฝ๐‘”๎€ธฬ‚||||(๐œ‰)2๎‚€||๐œ‰||1+2๎‚๐‘Ÿ๎ƒช๐‘‘๐œ‰1/2+๎ƒฉ๎€œฮ“๐ฝ+1||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ||||ฬ‚๐‘”(๐œ‰)2๎‚€||๐œ‰||1+2๎‚๐‘Ÿ๎ƒช๐‘‘๐œ‰1/2=โˆถ๐ผ1+๐ผ2.(3.12) We estimate the two parts at the right-hand side of (3.12) separately. For ๐ผ2 we have๐ผ2=๎ƒฉ๎€œฮ“๐ฝ+1||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ||||ฬ‚๐‘”(๐œ‰)2๎‚€||๐œ‰||1+2๎‚๐‘Ÿ๎ƒช๐‘‘๐œ‰1/2=โŽ›โŽœโŽœโŽœโŽœโŽœโŽ๎€œฮ“๐ฝ+1||||||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ๎‚ต๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ||||||||๐‘ข(1,โ‹…)2๎‚€||๐œ‰||1+2๎‚๐‘ŸโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐‘‘๐œ‰1/2โ‰คsup๐œ‰โˆˆฮ“๐ฝ+1||||||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ๎‚ต๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ1๎‚€||๐œ‰||1+2๎‚(๐‘ โˆ’๐‘Ÿ)/2||||||||ร—๎ƒฉ๎€œฮ“๐ฝ+1||||๎‚€||๐œ‰||๐‘ข(1,โ‹…)1+2๎‚๐‘ /2||||2๎ƒช๐‘‘๐œ‰1/2๎‚€4โ‰ค2โ‹…3๐œ‹2๐ฝ๎‚โˆ’(๐‘ โˆ’๐‘Ÿ)๐‘’๎”โˆ’(1โˆ’๐‘ฅ)๐‘›((4/3)๐œ‹2๐ฝ)2โˆ’๐‘˜2โ‹…โ€–๐‘ข(1,โ‹…)โ€–๐ป๐‘ โ‰ค2โ‹…(22๐ฝโˆ’๐‘˜2)โˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆšโˆ’(1โˆ’๐‘ฅ)22๐ฝโˆ’๐‘˜2๐ธ.(3.13) Now we turn to ๐ผ1. There holds๐ผ1=๎ƒฉ๎€œฮฉ๐ฝ+1||||๎‚ต๐‘ฅ๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ๎€ท๐‘„๐ฝ๐‘”๎€ธฬ‚||||(๐œ‰)2๎‚€||๐œ‰||1+2๎‚๐‘Ÿ๎ƒช๐‘‘๐œ‰1/2โ‰คโ€–โ€–๐‘‡๐‘ฅ๐‘„๐ฝ๐‘”โ€–โ€–๐ป๐‘Ÿโ‰ค๎‚€๐ถ5๐‘’๐‘ฅโˆš22๐ฝโˆ’๐‘˜2๎‚โ€–โ€–๐‘„+1๐ฝ๐‘”โ€–โ€–๐ป๐‘Ÿ,(3.14) since ๐‘„๐ฝ๐‘”โˆˆ๐‘‰๐ฝ+1. Furthermore, from (2.14), it follows thatโ€–โ€–๐‘„๐ฝ๐‘”โ€–โ€–๐ป๐‘Ÿ=โ€–โ€–๐‘„๐ฝ๐‘€๐ฝ๐‘”โ€–โ€–๐ป๐‘Ÿโ‰คโ€–โ€–๐‘€๐ฝ๐‘”โ€–โ€–๐ป๐‘Ÿ=๎‚ต๎€œฮ“๐ฝ||||ฬ‚๐‘”(๐œ‰)2๎‚€||๐œ‰||1+2๎‚๐‘Ÿ๎‚ถ๐‘‘๐œ‰1/2=โŽ›โŽœโŽœโŽœโŽœโŽœโŽ๎€œฮ“๐ฝ||||||||ฬ‚๐‘ข(1,๐œ‰)๎‚ต๎”cosh||๐œ‰||2โˆ’๐‘˜2๎‚ถ||||||||2๎‚€||๐œ‰||1+2๎‚๐‘ŸโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐‘‘๐œ‰1/2โ‰ค2โ‹…2โˆ’๐ฝ(๐‘ โˆ’๐‘Ÿ)๐‘’โˆ’๎”๐‘›((2/3)๐œ‹2๐ฝ)2โˆ’๐‘˜2โ€–๐‘ข(1,โ‹…)โ€–๐ป๐‘ โ‰ค2โ‹…(22๐ฝโˆ’๐‘˜2)โˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆ’โˆš22๐ฝโˆ’๐‘˜2๐ธ.(3.15) Therefore,โ€–โ€–๐‘ƒ๐ฝ๐‘‡๐‘ฅ(๐ผโˆ’๐‘ƒ๐ฝโ€–โ€–)๐‘”๐ป๐‘Ÿ๎€ทโ‰ค21+๐ถ52๎€ธ๎€ท2๐ฝโˆ’๐‘˜2๎€ธโˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆšโˆ’(1โˆ’๐‘ฅ)22๐ฝโˆ’๐‘˜2๐ธ๎€ท2+22๐ฝโˆ’๐‘˜2๎€ธโˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆ’โˆš22๐ฝโˆ’๐‘˜2๐ธ.(3.16) Combining (3.11) and (3.16) with (3.10), we haveโ€–โ€–(๐‘‡๐‘ฅโˆ’๐‘‡๐‘ฅ,๐ฝโ€–โ€–)๐‘”๐ป๐‘Ÿ๎€ท๐ถโ‰ค21+1+๐ถ52๎€ธ๎€ท2๐ฝโˆ’๐‘˜2๎€ธโˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆšโˆ’(1โˆ’๐‘ฅ)22๐ฝโˆ’๐‘˜2๐ธ๎€ท2+22๐ฝโˆ’๐‘˜2๎€ธโˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆ’โˆš22๐ฝโˆ’๐‘˜2๐ธ.(3.17) Then from (3.9) and (3.17) we finally arrive atโ€–โ€–๐‘‡๐‘ฅ๐‘”โˆ’๐‘‡๐‘ฅ,๐ฝ๐‘”๐‘šโ€–โ€–๐ป๐‘Ÿโ‰ค๎‚€๐ถ5๐‘’๐‘ฅโˆš22(๐ฝโˆ’1)โˆ’๐‘˜2๎‚๎€ท2+1๐›ฟ+22๐ฝโˆ’๐‘˜2๎€ธโˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆ’โˆš22๐ฝโˆ’๐‘˜2๐ธ๎€ท๐ถ+21+1+๐ถ52๎€ธ๎€ท2๐ฝโˆ’๐‘˜2๎€ธโˆ’(๐‘ โˆ’๐‘Ÿ)/2๐‘’โˆšโˆ’(1โˆ’๐‘ฅ)22๐ฝโˆ’๐‘˜2๐ธ.(3.18)

In order to show some stability estimates of the Hรถlder type for our method using (3.18), we use the following lemma which appeared in [24] for choosing a proper regularization parameter ๐ฝ.

Lemma 3.4. Let the function ๐‘“(๐œ†)โˆถ[0,๐‘Ž]โ†’โ„ be given by ๐‘“(๐œ†)=๐œ†๐‘๎‚€1๐‘‘ln๐œ†๎‚โˆ’๐‘(3.19) with a constant ๐‘โˆˆโ„ and positive constants ๐‘Ž<1, ๐‘, and ๐‘‘. Then for the inverse function ๐‘“โˆ’1(๐œ†), one has ๐‘“โˆ’1(๐œ†)=๐œ†1/๐‘๎‚€๐‘‘๐‘1ln๐œ†๎‚๐‘/๐‘(1+๐‘œ(1))for๐œ†โŸถ0.(3.20)

Based on this lemma, we can choose the regularization parameter ๐ฝ by minimizing the right-hand side of (3.18).

Denote๐‘’โˆ’โˆš22๐ฝโˆ’๐‘˜2=๐œ†โˆˆ(0,1),(3.21) and let ๐ถ=๐ถ5/2(1+๐ถ1+๐ถ5) and๐ถ๐œ†โˆ’๐‘ฅ๐›ฟ=๐œ†1โˆ’๐‘ฅ๎‚€1ln๐œ†๎‚โˆ’(๐‘ โˆ’๐‘Ÿ)๐ธ,(3.22) that is,๐ถ๐›ฟ๐ธ๎‚€1=๐œ†ln๐œ†๎‚โˆ’(๐‘ โˆ’๐‘Ÿ).(3.23) Then by Lemma 3.4 we obtain that๐œ†=๐ถ๐›ฟ๐ธ๎‚€1ln๎‚๐ถ๐›ฟ/๐ธ๐‘ โˆ’๐‘Ÿ(1+๐‘œ(1))for๐ถ๐›ฟ๐ธ=โŸถ0๐ถ๐›ฟ๐ธ๎‚€๐ธln๎‚๐ถ๐›ฟ๐‘ โˆ’๐‘Ÿ(1+๐‘œ(1))for๐›ฟโŸถ0.(3.24) Taking the principal part of ๐œ†, we get๐ฝโˆ—=12log2๎‚ตln2๎‚ต๐ธ๎‚€๐ธ๐ถ๐›ฟln๎‚๐ถ๐›ฟโˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถ+๐‘˜2๎‚ถ,(3.25) due to (3.21). Now, summarizing above inference process, we obtain the main result of the present paper.

Theorem 3.5. For ๐‘ โ‰ฅ๐‘Ÿ, suppose that conditions (1.8) and (1.10) hold. If one takes ๐ฝโˆ—โˆ—=๎€บ๐ฝโˆ—๎€ป,(3.26) where ๐ฝโˆ— was defined in (3.25), [๐‘Ž] with square bracket denotes the largest integer less than or equal to ๐‘Žโˆˆ๐‘…. Then there holds the following stability estimate: โ€–โ€–๐‘‡๐‘ฅ๐‘”โˆ’๐‘‡๐‘ฅ,๐ฝ๐‘”๐‘šโ€–โ€–โ‰ค๎€ท2๎€ท๐ถ1+1+๐ถ5๎€ธ๐ธ๎€ธ๐‘ฅ๎€ท๐ถ5๐›ฟ๎€ธ1โˆ’๐‘ฅ๎‚€๐ธln๎‚๐ถ๐›ฟโˆ’(๐‘ โˆ’๐‘Ÿ)๐‘ฅร—๎‚ต๎‚ต1+ln๐ธ/๐ถ๐›ฟln๐ธ/๐ถ๐›ฟ+ln(ln๐ธ/๐ถ๐›ฟ)โˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถ๐‘ โˆ’๐‘Ÿ๎‚ถ+๎‚ต๎‚ต1+2๐ถln๐ธ/๐ถ๐›ฟln๐ธ/๐ถ๐›ฟ+ln(ln๐ธ/๐ถ๐›ฟ)โˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถ๐‘ โˆ’๐‘Ÿ๎‚ถ๐›ฟ=๎€ท2๎€ท๐ถ1+1+๐ถ5๎€ธ๐ธ๎€ธ๐‘ฅ๎€ท๐ถ5๐›ฟ๎€ธ1โˆ’๐‘ฅ๎‚€๐ธln๎‚๐ถ๐›ฟโˆ’(๐‘ โˆ’๐‘Ÿ)๐‘ฅ(1+๐‘œ(1)),(3.27) for ๐›ฟโ†’0.

Remark 3.6. In general, the a priori bound ๐ธ and the coefficients ๐ถ1-๐ถ5 and ๐ถ are not exactly known in practice. In this case, with ๐ฝโ‹†=๎‚ธ12log2๎‚ตln2๎‚ต1๐›ฟ๎‚€1ln๐›ฟ๎‚โˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถ+๐‘˜2๎‚ถ๎‚น,(3.28) it holds that โ€–โ€–๐‘‡๐‘ฅ๐‘”โˆ’๐‘‡๐‘ฅ,๐ฝ๐‘”๐‘šโ€–โ€–โ‰ค๐›ฟ1โˆ’๐‘ฅ๎‚€1ln๐›ฟ๎‚โˆ’(๐‘ โˆ’๐‘Ÿ)๐‘ฅ๎‚ต๐ถ5๎€ท๐ถ+21+1+๐ถ5๎€ธ๐ธ๎‚ตln1/๐›ฟln1/๐›ฟ+ln(ln1/๐›ฟ)โˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถ๐‘ โˆ’๐‘Ÿ๎‚ถ+๎‚ต๐ถ5๎‚ต+2๐ธln1/๐›ฟln1/๐›ฟ+ln(ln1/๐›ฟ)โˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถ๐‘ โˆ’๐‘Ÿ๎‚ถ๐›ฟ=๐›ฟ1โˆ’๐‘ฅ๎‚€1ln๐›ฟ๎‚โˆ’(๐‘ โˆ’๐‘Ÿ)๐‘ฅ(1+๐‘œ(1)),(3.29) for ๐›ฟโ†’0.

Remark 3.7. The proposed wavelet method can also be used to solve the following Cauchy problem for the modified Helmholtz equation (i.e., the Yukawa equation [25]) ฮ”๐‘ฃ(๐‘ฅ,๐‘ฆ)+๐‘˜2๐‘ฃ(๐‘ฅ,๐‘ฆ)=0,๐‘ฅโˆˆ(0,1),๐‘ฆโˆˆโ„๐‘›,๐‘›โ‰ฅ1,๐‘ฃ(0,๐‘ฆ)=๐‘”(๐‘ฆ),๐‘ฆโˆˆโ„๐‘›,๐‘ฃ๐‘ฅ(0,๐‘ฆ)=0,๐‘ฆโˆˆโ„๐‘›,(3.30) where ฮ”=๐œ•2/๐œ•๐‘ฅ2+โˆ‘๐‘›๐‘–=1๐œ•2/ฮ”๐‘ฆ2๐‘– is the same as in (1.1).
It is easy to know that the exact solution of problem (3.30) is 1๐‘ฃ(๐‘ฅ,๐‘ฆ)=(2๐œ‹)๐‘›/2๎€œโ„๐‘›๐‘’๐‘–๐œ‰โ‹…๐‘ฆ๎‚ต๐‘ฅ๎”cosh||๐œ‰||2+๐‘˜2๎‚ถฬ‚๐‘”(๐œ‰)๐‘‘๐œ‰.(3.31) Define an operator ๎‚๐‘‡๐‘ฅโˆถ๐‘”(๐‘ฆ)โ†ฆ๐‘ฃ(๐‘ฅ,๐‘ฆ) such that ๎‚ฟ๎‚๐‘‡๐‘ฅ๎‚ต๐‘ฅ๎”๐‘”(๐œ‰)=cosh||๐œ‰||2+๐‘˜2๎‚ถฬ‚๐‘”(๐œ‰),0<๐‘ฅโ‰ค1,(3.32) and the approximate solution is ๐‘ฃ๐›ฟ๐ฝ=๎‚๐‘‡๐‘ฅ,๐ฝ๐‘”๐‘š,(3.33) where ๐‘” and ๐‘”๐‘š satisfy (1.8), and ๎‚๐‘‡๐‘ฅ,๐ฝ=๐‘ƒ๐ฝ๎‚๐‘‡๐‘ฅ๐‘ƒ๐ฝ. If we select the regularization parameter ๐ฝโ€ =๎‚ธ12log2๎‚ตln2๎‚ต1๐›ฟ๎‚€1ln๐›ฟ๎‚โˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถโˆ’๐‘˜2๎‚ถ๎‚น,(3.34) then there holds โ€–โ€–๐‘ฃ(๐‘ฅ,โ‹…)โˆ’๐‘ฃ๐›ฟ๐ฝโ€–โ€–(๐‘ฅ,โ‹…)โ‰ค๐›ฟ1โˆ’๐‘ฅ๎‚€1ln๐›ฟ๎‚โˆ’(๐‘ โˆ’๐‘Ÿ)๐‘ฅร—๎‚ต๐ถ5๎€ท๐ถ+21+1+๐ถ5๎€ธ๐ธ๎‚ตln1/๐›ฟln1/๐›ฟ+ln(ln1/๐›ฟ)โˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถ๐‘ โˆ’๐‘Ÿ๎‚ถ+๎‚ต๐ถ5๎‚ต+2๐ธln1/๐›ฟln1/๐›ฟ+ln(ln1/๐›ฟ)โˆ’(๐‘ โˆ’๐‘Ÿ)๎‚ถ๐‘ โˆ’๐‘Ÿ๎‚ถ๐›ฟ=๐›ฟ1โˆ’๐‘ฅ๎‚€1ln๐›ฟ๎‚โˆ’(๐‘ โˆ’๐‘Ÿ)๐‘ฅ(1+(๐‘œ(1))),(3.35) for ๐›ฟโ†’0.

4. Numerical Aspect

4.1. Numerical Implementation

We want to discuss some numerical aspects of the proposed method in this section.

We consider the case when ๐‘›=2. Supposing that the sequence {๐‘”(๐‘ฆ1,๐‘–,๐‘ฆ2,๐‘—)}๐‘๐‘–,๐‘—=1 represents samples from the function ๐‘”(๐‘ฆ1,๐‘ฆ2) on an equidistant grid in the square [๐‘Ž,๐‘]2, and ๐‘ is even, then we add a random uniformly distributed perturbation to each data and obtain the perturbation data๐‘”๐‘š=๐‘”+๐œ‡randn(size(๐‘”)).(4.1) Then the total noise ๐›ฟ can be measured in the sense of root mean square error according toโ€–โ€–๐‘”๐›ฟโˆถ=๐‘šโ€–โ€–โˆ’๐‘”๐‘™2=๎„ถ๎„ต๎„ต๎„ตโŽท1๐‘2๐‘๎“๐‘๐‘–=1๎“๐‘—=1๎€ท๐‘”๐‘š๎€ท๐‘ฆ1,๐‘–,๐‘ฆ2,๐‘—๎€ธ๎€ท๐‘ฆโˆ’๐‘”1,๐‘–,๐‘ฆ2,๐‘—๎€ธ๎€ธ2,(4.2) where โ€randn(โ‹…)โ€ is a normally distributed random variable with zero mean and unit standard deviation and ๐œ– dictates the level of noise. โ€randn(size(๐‘”))โ€ returns an array of random entries that is the same size as ๐‘”.

For the function ๐‘”๐‘š(๐‘ฆ1,๐‘ฆ2), we have๐‘ข๐›ฟ๐ฝ(๐‘ฅ,๐‘ฆ)=๐‘‡๐‘ฅ,๐ฝ๐‘”๐‘š=๐‘ƒ๐ฝ๐‘‡๐‘ฅ๐‘ƒ๐ฝ๐‘”๐‘š.(4.3) Hence, by using it with ๐ฝโ‹† being given in (3.28), we can obtain the approximate solution.

We will use DMT as a short form of the โ€œdiscrete Meyer (wavelet) transform." Algorithms for discretely implementing the Meyer wavelet transform are described in [21]. These algorithms are based on the fast Fourier transform (FFT), and computing the DMT of a vector in โ„ requires ๐’ช(๐‘log22๐‘) operations.

4.2. Numerical Tests

In this section some numerical tests are presented to demonstrate the usefulness of the approach. The tests were performed using Matlab and the wavelet package WaveLab 850, which was downloaded from http://www-stat.stanford.edu/~wavelab/. Throughout this section, we set ๐œ‡=10โˆ’3, ๐‘Ž=โˆ’5, ๐‘=5, and ๐‘=26.

Example 4.1. Take ๐‘›=2 and ๐‘”(๐‘ฆ)=๐‘’โˆ’๐‘ฆ2โˆˆ๐’ฎ(โ„2), where ๐‘ฆ=(๐‘ฆ1,๐‘ฆ2) and ๐’ฎ(โ„2) denotes the Schwartz function space.
Since ฬ‚๐‘”(๐œ‰)โˆˆ๐’ฎ(โ„2), ๐œ‰=(๐œ‰1,๐œ‰2) decays rapidly, and the formula (1.7) can be used to calculate ๐‘ข(๐‘ฅ,๐‘ฆ) with exact data directly, that is, 1๐‘ข(๐‘ฅ,๐‘ฆ)=๎€œ2๐œ‹โ„2๐‘’๐‘–(๐œ‰1๐‘ฆ1+๐œ‰2๐‘ฆ2)๎‚ต๐‘ฅ๎”cosh๐œ‰21+๐œ‰22โˆ’๐‘˜2๎‚ถ๎€ท๐œ‰ฬ‚๐‘”1,๐œ‰2๎€ธ๐‘‘๐œ‰1๐‘‘๐œ‰2.(4.4)

In Figure 1 we give the exact solution at ๐‘ฅ=1, that is, ๐‘ข(1,๐‘ฆ1,๐‘ฆ2), and the reconstructed solution ๐‘ข๐›ฟ(1,๐‘ฆ1,๐‘ฆ2) from the noisy data ๐‘”๐‘š(๐‘ฆ1,๐‘ฆ2) without regularization. We see that ๐‘ข๐›ฟ does not approximate the solution and some regularization procedure is necessary.

Letting ๐‘˜=1, the regularized solutions and the corresponding errors ๐‘ขโˆ’๐‘ข๐›ฟ๐ฝโ‹† defined by the regularization parameter ๐ฝโ‹†=3,4,5 are illustrated in Figure 2. We can see that in ๐‘‰3 the approximation is very poor since the frequencies are cut off excessively by the projection ๐‘ƒ3. If ๐ฝโ‹† is taken to be too large, the noise in the function ๐‘”๐‘š is not damped enough by ๐‘ƒ๐ฝโ‹†, and thus the high frequencies of ฬ‚๐‘”๐‘š are so extremely magnified that they destroy the approximated solution. The approximation parameter ๐ฝโ‹†=4 seems to be the optimal choice for this example.

In Figure 3 we display the exact solution, its approximation, and corresponding errors for ๐‘˜=5 and 100, respectively. We see that the proposed method is useful for different wave number ๐‘˜.

Figure 4 shows that the proposed method for the Cauchy problem for the modified Helmholtz equation is also effective.

Acknowledgments

The authors would like to thank the WaveLab Team at the Stanford University for the help of their wavelet package Wavelab850. The work described in this paper was supported by the Fundamental Research Funds for the Central Universities of China (Project no. ZYGX2009J099) and the National Natural Science Foundation of China (Project no. 11171136).