Table of Contents
ISRN Soil Science
Volume 2012, Article ID 435485, 11 pages
http://dx.doi.org/10.5402/2012/435485
Research Article

Degradation of Asphaltenic Fraction by Locally Isolated Halotolerant Bacterial Strains

1Environmental Biotechnology, Egyptian Petroleum Research Institute, Nasr City, Cairo 11271, Egypt
2Faculty of Science, Ain Shams University, Cairo 11566, Egypt

Received 23 December 2011; Accepted 30 January 2012

Academic Editors: B. J. Allred, T. J. Cutright, W. Ding, and Z. L. He

Copyright © 2012 Hager R. Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Pineda Flores, G. Bollarguello, and A. Mestahoward, “A microbial mixed culture isolated from a crude oil sample that uses asphaltenes as a carbon and energy source,” Journal of Biodegradation, vol. 15, pp. 145–151, 2004. View at Google Scholar
  2. S. Naveenkumar, N. Manoharan, S. Ganesan, S. P. Manivannan, and G. Velsamy, “Isolation, screening and in vitro mutational assessment of indigenous soil bacteria for enhanced capability in petroleum degradation,” International Journal of Environmental Science, vol. 1, no. 4, p. 498, 2010. View at Google Scholar
  3. J. Murgich, A. J. Y. Abanero, and P. O. Strausz, “Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand,” Energy and Fuels, vol. 13, no. 2, pp. 278–286, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. O. P. Strausz, T. W. Mojelsky, F. Faraji, and E. M. Lown, “Additional structural details on Athabasca asphaltene and their ramifications,” Energy and Fuels, vol. 13, no. 2, pp. 207–227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Tavassoli, S. M. Mousavi, S. A. Shojaosadati, and H. Salehizadeh, “Asphaltene biodegradation using microorganisms isolated from oil samples,” Fuel, vol. 93, pp. 142–148, 2012. View at Publisher · View at Google Scholar
  6. R. M. Atlas, “Microbial degradation of petroleum hydrocarbons: an environmental perspective,” Microbiological Reviews, vol. 45, no. 1, pp. 180–209, 1981. View at Google Scholar · View at Scopus
  7. M. Guiliano, A. Boukir, P. Doumenq et al., “Supercritical fluid extraction of BAL 150 crude oil asphaltenes,” Energy and Fuels, vol. 14, no. 1, pp. 89–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Alexander, Biodegradation and Bioremediation, Academic Press, San Diego, Calif, USA, 2 edition, 1999.
  9. C. H. Chineau, G. Rougeux, C. Yepremain, and J. Oudot, “Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil,” Soil Biology and Biochemistry, vol. 37, no. 8, pp. 1490–1497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Farahat and N. Sh. El-Gendy, “Biodegradation of baleym mix crude oil in soil microcosm by some locally isolated Egyptian bacterial strains,” Journal Soil and Sediment Contamination, vol. 17, no. 2, pp. 150–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Sh. El-Gendy, Y. M. Moustafa, M. A. K. Barakat, and S. F. Deriase, “Evaluation of a bioslurry remediation of petroleum hydrocarbons contaminated sediments using chemical, mathematical and microscopic analysis,” International Journal of Environmental Studies, vol. 66, no. 5, pp. 563–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Sh. El-Gendy and J. Y. Farah, “Kinetic modeling and error analysis for decontamination of different petroleum hydrocarbon components in biostimulation of oily soil microcosm,” Journal Soil and Sediment Contamination, vol. 20, no. 4, pp. 432–446, 2011. View at Publisher · View at Google Scholar
  13. M. Ayala, E. L. Hernandez-Lopez, P. Lucia, and V. D. Rafael, “Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil,” Fuel, vol. 92, no. 1, pp. 245–249, 2012. View at Publisher · View at Google Scholar
  14. N. Sh. El-Gendy and M. A. Abo-State, “Isolation, characterization and evaluation of staphylococcus gallinarum NK1 as a degrader for dibenzothiophene, phenantherene and naphthalene,” Egyptian Journal of Petroleum, vol. 17, no. 2, pp. 75–91, 2008. View at Google Scholar
  15. N. Sh. El-Gendy, Y. M. Moustafa, S. A. Habib, and Sh. Ali, “Evaluation of Corynebacterium variabilis Sh42 as a degrader for different polyaromatic compounds,” Journal of American Science, vol. 6, no. 11, pp. 343–356, 2010. View at Google Scholar
  16. N. Sh. El-Gendy, Biodesulfurization potentials of crude oil by bacteria isolated from hydrocarbon polluted environments in Egypt, Ph.D. thesis, Department of Chemistry, Cairo University, Cairo, Egypt, 2004.
  17. H. J. Benson, Microbiological Application, WmC Brown Publishers, 6th edition, 1994.
  18. Y. M. Moustafa, “Contamination by polycyclic aromatic hydrocarbons in some Egyptian Mediterranean coasts,” Biosciences Biotechnology Research Asia, vol. 2, no. 1, pp. 15–24, 2004. View at Google Scholar
  19. M. M. El-Tokhi and Y. M. Mostafa, “Heavy metals and petroleum hydrocarbons contamination of bottom sediments of El Sukhna area, Gulf of Suez, Egypt,” Petroleum Science and Technology, vol. 19, no. 5-6, pp. 481–494, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. P. H. A. Sneath, N. S. Mair, M. E. Sarpe, and J.G. Holt, Bergey's Manual of Systematic Bacteriology, William and Wilkins, Baltimore, Md, USA, 9th edition, 1986.
  21. W. R. Hensyl, Bergey's Manual of Determinative Bacteriology, Williams and Wilkins, Baltimore, Md, USA, 9th edition, 1994.
  22. J. G. Holt, N. R. Krieg, P. H. A. Sneath, J. J. Staley, and S. T. William, Bergey's Manual of Determinative Bacteriology, William and Wilkins, Baltimore, Md, USA, 9th edition, 1994.
  23. Z. Wang, M. Fingas, and G. Sergy, “Chemical characterization of crude oil residues from an arctic beach by GC/MS and GC/FID,” Environmental Science and Technology, vol. 29, no. 10, pp. 2622–2631, 1995. View at Google Scholar · View at Scopus
  24. Z. Wang, M. Fingas, and P. David, “Oil spill identification,” Journal of Chromatography A, vol. 843, no. 1-2, pp. 369–411, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Sh. El-Gendy and Y. M. Moustafa, “Environmental assessment of petroleum hydrocarbons contaminating Temsah Lake, Suez Canal, Egypt,” Oriental Journal of Chemistry, vol. 23, no. 1, pp. 11–26, 2007. View at Google Scholar
  26. Z. Wang and M. Fingas, “Fate and identification of spilled oils and petroleum products in the environment by GC-MS and GC-FID,” Energy Sources, vol. 25, no. 6, pp. 491–508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. P. M. Medeiros and M. Caruso Bícego, “Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers Π. Sǎo Sebastiǎo, Sp-Brazil,” Marine Pollution Bulletin, vol. 49, pp. 892–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. T. Madigan, J. Martinko, M. Parker, and J. Brock, Biology of Microorganisms, Prentice Hall, 8th edition, 1998.
  29. A. Ilyina, M. I. Castillo Sánchez, J. A. Villarreal Sánchez, G. Ramírez Esquivel, and J. Candelas Ramirez, “Isolation of soil bacteria for bioremediation of hydrocarbon contamination,” Vestnik Moskovskogo Universiteta Seriya 2, vol. 44, no. 1, pp. 88–91, 2003. View at Google Scholar · View at Scopus
  30. X. Dong, Q. Hong, L. He, X. Jiang, and S. Li, “Characterization of phenol-degrading bacterial strains isolated from natural soil,” International Biodeterioration and Biodegradation, vol. 62, no. 3, pp. 257–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. V. Chang, S. W. Chang, and S. Y. Yuan, “Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge,” Advances in Environmental Research, vol. 7, no. 3, pp. 623–628, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Konishi, Y. Ishii, T. Onaka, K. Okumura, and M. Suzuki, “Thermophilic carbon-sulfur-bond-targeted biodesulfurization,” Applied and Environmental Microbiology, vol. 63, no. 8, pp. 3164–3169, 1997. View at Google Scholar · View at Scopus
  33. M. Kishimoto, M. Inui, T. Omasa, Y. Katakura, K. I. Suga, and K. Okumura, “Efficient production of desulfurizing cells with the aid of expert system,” Biochemical Engineering Journal, vol. 5, no. 2, pp. 143–147, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Gaskin and R. Bentham, “Comparison of enrichment methods for the isolation of pyrene-degrading bacteria,” International Biodeterioration and Biodegradation, vol. 56, no. 2, pp. 80–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Chen, W. Zhang, Y. Cai, and W. Li, “Desulfurization of various organic sulfur compounds and the mixture of DBT and 4,6-DMDBT by Mycobacterium sp. ZD-19,” Bioresource Technology, vol. 99, no. 9, pp. 3630–3634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Youssef, G. E. El-Taweel, A. Y. El-Naggar, Sh. E. El-Hawary, M. A. El-Meleigy, and S. A. Ahmed, “Hydrocarbon degrading bacteria as indicator of petroleum pollution in Ismailia Canal, Egypt,” World Applied Sciences Journal, vol. 8, no. 10, pp. 1226–1233, 2010. View at Google Scholar
  37. R. M. Atlas, “Petroleum biodegradation and oil spill bioremediation,” Marine Pollution Bulletin, vol. 31, no. 4–12, pp. 178–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. Adebusoye, M. O. Ilori, O. O. Amund, O. D. Teniola, and S. O. Olatope, “Microbial degradation of petroleum hydrocarbons in a polluted tropical stream,” World Journal of Microbiology and Biotechnology, vol. 23, no. 8, pp. 1149–1159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. J. MacNaughton, J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White, “Microbial population changes during bioremediation of an experimental oil spill,” Applied and Environmental Microbiology, vol. 65, no. 8, pp. 3566–3574, 1999. View at Google Scholar · View at Scopus
  40. J. Connan, “Biodegradation of crude oils in reservoirs,” in Advances in Petroleum Geochemistry, J. Brooks and D. H. Welte, Eds., pp. 298–335, Academic Press, London, UK, 1984. View at Google Scholar
  41. K. Venkateswaran, T. Hoaki, M. Kato, and T. Maruyama, “Microbial degradation of resins fractionated from Arabian light crude oil,” Canadian Journal of Microbiology, vol. 41, no. 4-5, pp. 418–424, 1995. View at Google Scholar · View at Scopus
  42. G. Thouand, P. Bauda, J. Oudot, G. Kirsch, C. Sutton, and J. F. Vidalie, “Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula,” Canadian Journal of Microbiology, vol. 45, no. 2, pp. 106–115, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. M. M. Moustafa, N. Sh. El-Gendy, L. A. Farahat, M. A. Abo-State, and S. A. El-Temtamy, “Biodesulfurization of Ras Badran crude oil and its constituents with special emphasis on its asphaltene fraction,” Egyptian Journal of Petroleum, vol. 15, no. 1, pp. 21–30, 2006. View at Google Scholar
  44. J. R. Becker, Crude Oil Waxes, Emulsion and Asphaltenes, PennWell Books, Tulsa, Okla, USA, 1997.
  45. M. S. Lin, E. T. Premuzic, J. H. Yablon, and W. M. Zhou, “Biochemical processing of heavy oils and residuum,” Applied Biochemistry and Biotechnology, vol. 57-58, pp. 659–664, 1996. View at Google Scholar · View at Scopus