Table of Contents
ISRN Obesity
Volume 2012, Article ID 437198, 12 pages
http://dx.doi.org/10.5402/2012/437198
Review Article

Circadian Rhythms and Obesity in Mammals

Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100 Rehovot, Israel

Received 16 October 2012; Accepted 11 November 2012

Academic Editors: M. Delibegovic and Z. Wang

Copyright © 2012 Oren Froy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. B. Wyatt, K. P. Winters, and P. M. Dubbert, “Overweight and obesity: prevalence, consequences, and causes of a growing public health problem,” American Journal of the Medical Sciences, vol. 331, no. 4, pp. 166–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Froy, “Metabolism and circadian rhythms—implications for obesity,” Endocrine Reviews, vol. 31, no. 1, pp. 1–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Marcheva, K. M. Ramsey, E. D. Buhr et al., “Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes,” Nature, vol. 466, no. 7306, pp. 627–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Oishi, H. Shirai, and N. Ishida, “CLOCK is involved in the circadian transactivation of peroxisome- proliferator-activated receptor α (PPARα) in mice,” Biochemical Journal, vol. 386, no. 3, pp. 575–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. F. W. Turek, C. Joshu, A. Kohsaka et al., “Obesity and metabolic syndrome in circadian clock mutant nice,” Science, vol. 308, no. 5724, pp. 1043–1045, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Arble, J. Bass, A. D. Laposky, M. H. Vitaterna, and F. W. Turek, “Circadian timing of food intake contributes to weight gain,” Obesity, vol. 17, no. 11, pp. 2100–2102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Panda, J. B. Hogenesch, and S. A. Kay, “Circadian rhythms from flies to human,” Nature, vol. 417, no. 6886, pp. 329–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Reppert and D. R. Weaver, “Coordination of circadian timing in mammals,” Nature, vol. 418, no. 6901, pp. 935–941, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. A. Akhtar, A. B. Reddy, E. S. Maywood et al., “Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus,” Current Biology, vol. 12, no. 7, pp. 540–550, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. E. Duffield, J. D. Best, B. H. Meurers, A. Bittner, J. J. Loros, and J. C. Dunlap, “Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells,” Current Biology, vol. 12, no. 7, pp. 551–557, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. C. B. Green, J. S. Takahashi, and J. Bass, “The meter of metabolism,” Cell, vol. 134, no. 5, pp. 728–742, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Kornmann, N. Preitner, D. Rifat, F. Fleury-Olela, and U. Schibler, “Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs,” Nucleic Acids Research, vol. 29, no. 11, article E51, 2001. View at Google Scholar · View at Scopus
  13. K. F. Storch, O. Lipan, I. Leykin et al., “Extensive and divergent circadian gene expression in liver and heart,” Nature, vol. 417, pp. 78–83, 2002. View at Google Scholar · View at Scopus
  14. E. D. Herzog, J. S. Takahashi, and G. D. Block, “Clock controls circadian period in isolated suprachiasmatic nucleus neurons,” Nature Neuroscience, vol. 1, no. 8, pp. 708–713, 1998. View at Google Scholar · View at Scopus
  15. C. Liu, D. R. Weaver, S. H. Strogatz, and S. M. Reppert, “Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei,” Cell, vol. 91, no. 6, pp. 855–860, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. D. K. Welsh, D. E. Logothetis, M. Meister, and S. M. Reppert, “Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms,” Neuron, vol. 14, no. 4, pp. 697–706, 1995. View at Google Scholar · View at Scopus
  17. J. J. Gooley, J. Lu, T. C. Chou, T. E. Scammell, and C. B. Saper, “Melanopsin in cells of origin of the retinohypothalamic tract,” Nature Neuroscience, vol. 4, no. 12, p. 1165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. Lucas, M. S. Freedman, D. Lupi, M. Munoz, Z. K. David-Gray, and R. G. Foster, “Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice,” Behavioural Brain Research, vol. 125, no. 1-2, pp. 97–102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Quintero, S. J. Kuhlman, and D. G. McMahon, “The biological clock nucleus: a multiphasic oscillator network regulated by light,” Journal of Neuroscience, vol. 23, no. 22, pp. 8070–8076, 2003. View at Google Scholar · View at Scopus
  20. O. Froy, “Circadian rhythms, aging, and life span in mammals,” Physiology (Bethesda), vol. 26, pp. 225–235, 2011. View at Google Scholar
  21. O. Froy and N. Chapnik, “Circadian oscillation of innate immunity components in mouse small intestine,” Molecular Immunology, vol. 44, no. 8, pp. 1954–1960, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Lee, J. P. Etchegaray, F. R. A. Cagampang, A. S. I. Loudon, and S. M. Reppert, “Posttranslational mechanisms regulate the mammalian circadian clock,” Cell, vol. 107, no. 7, pp. 855–867, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. D. K. Welsh, S. H. Yoo, A. C. Liu, J. S. Takahashi, and S. A. Kay, “Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression,” Current Biology, vol. 14, no. 24, pp. 2289–2295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. H. Yoo, S. Yamazaki, P. L. Lowrey et al., “PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5339–5346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Saeb-Parsy, S. Lombardelli, F. Z. Khan, K. McDowall, I. T. H. Au-Yong, and R. E. J. Dyball, “Neural connections of hypothalamic neuroendocrine nuclei in the rat,” Journal of Neuroendocrinology, vol. 12, no. 7, pp. 635–648, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Burioka, Y. Fukuoka, M. Takata et al., “Circadian rhythms in the CNS and peripheral clock disorders: function of clock genes: influence of medication for bronchial asthma on circadian gene,” Journal of Pharmacological Sciences, vol. 103, no. 2, pp. 144–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. J. Maron, J. Kogan, M. A. Proschan, G. M. Hecht, and W. C. Roberts, “Circadian variability in the occurrence of sudden cardiac death in patients with hypertrophic cardiomyopathy,” Journal of the American College of Cardiology, vol. 23, no. 6, pp. 1405–1409, 1994. View at Google Scholar · View at Scopus
  28. B. Staels, “When the Clock stops ticking, metabolic syndrome explodes,” Nature Medicine, vol. 12, no. 1, pp. 54–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Davis and D. K. Mirick, “Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle,” Cancer Causes and Control, vol. 17, no. 4, pp. 539–545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Filipski, V. M. King, X. M. Li et al., “Disruption of circadian coordination accelerates malignant growth in mice,” Pathologie Biologie, vol. 51, no. 4, pp. 216–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Fu, H. Pelicano, J. Liu, P. Huang, and C. C. Lee, “The circadian gene period2 plays an important role in tumor suppression and DNA-damage response in vivo,” Cell, vol. 111, pp. 41–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. V. Kondratov, A. A. Kondratova, V. Y. Gorbacheva, O. V. Vykhovanets, and M. P. Antoch, “Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock,” Genes and Development, vol. 20, no. 14, pp. 1868–1873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. P. D. Penev, D. E. Kolker, P. C. Zee, and F. W. Turek, “Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease,” American Journal of Physiology, vol. 275, no. 6, pp. H2334–H2337, 1998. View at Google Scholar · View at Scopus
  34. M. W. Hurd and M. R. Ralph, “The significance of circadian organization for longevity in the golden hamster,” Journal of Biological Rhythms, vol. 13, no. 5, pp. 430–436, 1998. View at Google Scholar · View at Scopus
  35. M. Karasek, “Melatonin, human aging, and age-related diseases,” Experimental Gerontology, vol. 39, no. 11-12, pp. 1723–1729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Klarsfeld and F. Rouyer, “Effects of circadian mutations and LD periodicity on the life span of drosophila melanogaster,” Journal of Biological Rhythms, vol. 13, no. 6, pp. 471–478, 1998. View at Google Scholar · View at Scopus
  37. M. A. Hofman and D. F. Swaab, “Living by the clock: the circadian pacemaker in older people,” Ageing Research Reviews, vol. 5, no. 1, pp. 33–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Scarbrough, S. Losee-Olson, E. P. Wallen, and F. W. Turek, “Aging and photoperiod affect entrainment and quantitative aspects of locomotor behavior in Syrian hamsters,” American Journal of Physiology, vol. 272, no. 4, pp. R1219–R1225, 1997. View at Google Scholar · View at Scopus
  39. S. Yamazaki, M. Straume, H. Tei, Y. Sakaki, M. Menaker, and G. D. Block, “Effects of aging on central and peripheral mammalian clocks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10801–10806, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. U. Schibler, J. Ripperger, and S. A. Brown, “Peripheral circadian oscillators in mammals: time and food,” Journal of Biological Rhythms, vol. 18, no. 3, pp. 250–260, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Froy, D. C. Chang, and S. M. Reppert, “Redox potential: differential roles in dCRY and mCRY1 functions,” Current Biology, vol. 12, no. 2, pp. 147–152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. M. Reppert and D. R. Weaver, “Molecular analysis of mammalian circadian rhythms,” Annual Review of Physiology, vol. 63, pp. 647–676, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. M. J. Zylka, L. P. Shearman, D. R. Weaver, and S. M. Reppert, “Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain,” Neuron, vol. 20, no. 6, pp. 1103–1110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. E. J. Eide and D. M. Virshup, “Casein kinase I: another cog in the circadian clockworks,” Chronobiology International, vol. 18, no. 3, pp. 389–398, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. E. J. Eide, M. F. Woolf, H. Kang et al., “Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation,” Molecular and Cellular Biology, vol. 25, no. 7, pp. 2795–2807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Whitmore, N. Cermakian, C. Crosio et al., “A clockwork organ,” Biological Chemistry, vol. 381, no. 9-10, pp. 793–800, 2000. View at Google Scholar · View at Scopus
  47. E. J. Eide, H. Kang, S. Crapo, M. Gallego, and D. M. Virshup, “Casein kinase I in the mammalian circadian clock,” Methods in Enzymology, vol. 393, article no. 19, pp. 408–418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Garaulet and J. A. Madrid, “Chronobiological aspects of nutrition, metabolic syndrome and obesity,” Advanced Drug Delivery Reviews, vol. 62, no. 9-10, pp. 967–978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Hirota and Y. Fukada, “Resetting mechanism of central and peripheral circadian clocks in mammals,” Zoological Science, vol. 21, no. 4, pp. 359–368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Kohsaka and J. Bass, “A sense of time: how molecular clocks organize metabolism,” Trends in Endocrinology and Metabolism, vol. 18, no. 1, pp. 4–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. J. Davidson, O. Castañón-Cervantes, and F. K. Stephan, “Daily oscillations in liver function: diurnal vs circadian rhythmicity,” Liver International, vol. 24, no. 3, pp. 179–186, 2004. View at Google Scholar · View at Scopus
  52. S. E. la Fleur, “Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue,” Journal of Neuroendocrinology, vol. 15, no. 3, pp. 315–322, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. S. E. La Fleur, A. Kalsbeek, J. Wortel, and R. M. Buijs, “A suprachiasmatic nucleus generated rhythm in basal glucose concentrations,” Journal of Neuroendocrinology, vol. 11, no. 8, pp. 643–652, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. K. M. Ramsey, B. Marcheva, A. Kohsaka, and J. Bass, “The clockwork of metabolism,” Annual Review of Nutrition, vol. 27, pp. 219–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Kalsbeek, M. Ruiter, S. E. La Fleur, C. Cailotto, F. Kreier, and R. M. Buijs, “Chapter 17: the hypothalamic clock and its control of glucose homeostasis,” Progress in Brain Research, vol. 153, pp. 283–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Yamazaki, Y. Ishida, and S. I. Inouye, “Circadian rhythms of adenosine triphosphate contents in the suprachiasmatic nucleus, anterior hypothalamic area and caudate putamen of the rat—negative correlation with electrical activity,” Brain Research, vol. 664, no. 1-2, pp. 237–240, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Cailotto, S. E. La Fleur, C. Van Heijningen et al., “The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved?” European Journal of Neuroscience, vol. 22, no. 10, pp. 2531–2540, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Zvonic, Z. E. Floyd, R. L. Mynatt, and J. M. Gimble, “Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis,” Obesity, vol. 15, no. 3, pp. 539–543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Zvonic, A. A. Ptitsyn, S. A. Conrad et al., “Characterization of peripheral circadian clocks in adipose tissues,” Diabetes, vol. 55, no. 4, pp. 962–970, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Ando, H. Yanagihara, Y. Hayashi et al., “Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue,” Endocrinology, vol. 146, no. 12, pp. 5631–5636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. S. Bray and M. E. Young, “Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte,” Obesity Reviews, vol. 8, no. 2, pp. 169–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Ruiter, S. E. La Fleur, C. Van Heijningen, J. Van der Vliet, A. Kalsbeek, and R. M. Buijs, “The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior,” Diabetes, vol. 52, no. 7, pp. 1709–1715, 2003. View at Google Scholar · View at Scopus
  63. S. F. De Boer and J. Van Der Gugten, “Daily variations in plasma noradrenaline, adrenaline and corticosterone concentrations in rats,” Physiology and Behavior, vol. 40, no. 3, pp. 323–328, 1987. View at Google Scholar · View at Scopus
  64. R. S. Ahima, D. Prabakaran, and J. S. Flier, “Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding: implications for energy homeostasis and neuroendocrine function,” Journal of Clinical Investigation, vol. 101, no. 5, pp. 1020–1027, 1998. View at Google Scholar · View at Scopus
  65. B. Bodosi, J. Gardi, I. Hajdu, E. Szentirmai, F. Obal Jr., and J. M. Krueger, “Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation,” American Journal of Physiology, vol. 287, no. 5, pp. R1071–R1079, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. J. L. Downs and H. F. Urbanski, “Aging-related sex-dependent loss of the circulating leptin 24-h rhythm in the rhesus monkey,” Journal of Endocrinology, vol. 190, no. 1, pp. 117–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. S. P. Kalra, M. Bagnasco, E. E. Otukonyong, M. G. Dube, and P. S. Kalra, “Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity,” Regulatory Peptides, vol. 111, no. 1–3, pp. 1–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Kalsbeek, E. Fliers, J. A. Romijn et al., “The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels,” Endocrinology, vol. 142, no. 6, pp. 2677–2685, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Sukumaran, R. R. Almon, D. C. DuBois, and W. J. Jusko, “Circadian rhythms in gene expression: relationship to physiology, disease, drug disposition and drug action,” Advanced Drug Delivery Reviews, vol. 62, no. 9-10, pp. 904–917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. X. M. Guan, J. F. Hess, H. Yu, P. J. Hey, and L. H. T. Van Der Ploeg, “Differential expression of mRNA for leptin receptor isoforms in the rat brain,” Molecular and Cellular Endocrinology, vol. 133, no. 1, pp. 1–7, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. C. X. Yi, J. Van Der Vliet, J. Dai, G. Yin, L. Ru, and R. M. Buijs, “Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus,” Endocrinology, vol. 147, no. 1, pp. 283–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. J. M. Zigman, J. E. Jones, C. E. Lee, C. B. Saper, and J. K. Elmquist, “Expression of ghrelin receptor mRNA in the rat and the mouse brain,” Journal of Comparative Neurology, vol. 494, no. 3, pp. 528–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Boden, X. Chen, and M. Polansky, “Disruption of circadian insulin secretion is associated with reduced glucose uptake in first-degree relatives of patients with type 2 diabetes,” Diabetes, vol. 48, no. 11, pp. 2182–2188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Van Cauter, K. S. Polonsky, and A. J. Scheen, “Roles of circadian rhythmicity and sleep in human glucose regulation,” Endocrine Reviews, vol. 18, no. 5, pp. 716–738, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. M. H. Oster, T. W. Castonguay, C. L. Keen, and J. S. Stern, “Circadian rhythm of corticosterone in diabetic rats,” Life Sciences, vol. 43, no. 20, pp. 1643–1645, 1988. View at Google Scholar · View at Scopus
  76. A. Velasco, I. Huerta, and B. Marin, “Plasma corticosterone, motor activity and metabolic circadian patterns in streptozotocin-induced diabetic rats,” Chronobiology International, vol. 5, no. 2, pp. 127–135, 1988. View at Google Scholar · View at Scopus
  77. Y. Shimomura, M. Takahashi, H. Shimizu et al., “Abnormal feeding behavior and insulin replacement in STZ-induced diabetic rats,” Physiology and Behavior, vol. 47, no. 4, pp. 731–734, 1990. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Spallone, L. Bernardi, L. Ricordi et al., “Relationship between the circadian rhythms of blood pressure and sympathovagal balance in diabetic autonomic neuropathy,” Diabetes, vol. 42, no. 12, pp. 1745–1752, 1993. View at Google Scholar · View at Scopus
  79. R. Heptulla, A. Smitten, B. Teague, W. V. Tamborlane, Y. Z. Ma, and S. Caprio, “Temporal patterns of circulating leptin levels in lean and obese adolescents: relationships to insulin, growth hormone, and free fatty acids rhythmicity,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 1, pp. 90–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Licinio, “Longitudinally sampled human plasma leptin and cortisol concentrations are inversely correlated,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 3, p. 1042, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Perfetto, R. Tarquini, G. Cornélissen et al., “Circadian phase difference of leptin in android versus gynoid obesity,” Peptides, vol. 25, no. 8, pp. 1297–1306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. M. F. Saad, M. G. Riad-Gabriel, A. Khan et al., “Diurnal and ultradian rhythmicity of plasma leptin: effects of gender and adiposity,” The Journal of Clinical Endocrinology & Metabolism, vol. 83, no. 2, pp. 453–459, 1998. View at Google Scholar
  83. A. Gavrila, C. K. Peng, J. L. Chan, J. E. Mietus, A. L. Goldberger, and C. S. Mantzoros, “Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns,” The Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 6, pp. 2838–2843, 2003. View at Google Scholar
  84. B. O. Yildiz, M. A. Suchard, M. L. Wong, S. M. McCann, and J. Licinio, “Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 28, pp. 10434–10439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Guo, S. Chatterjee, L. Li et al., “The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway,” FASEB Journal, vol. 26, pp. 3453–3463, 2012. View at Google Scholar
  86. S. Shimba, N. Ishii, Y. Ohta et al., “Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12071–12076, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Shimba, T. Ogawa, S. Hitosugi et al., “Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation,” PLoS One, vol. 6, article e25231, 2011. View at Google Scholar
  88. A. Chawla and M. A. Lazar, “Induction of Rev-ErbAα, an orphan receptor encoded on the opposite strand of the α-thyroid hormone receptor gene, during adipocyte differentiation,” Journal of Biological Chemistry, vol. 268, no. 22, pp. 16265–16269, 1993. View at Google Scholar · View at Scopus
  89. I. P. Torra, V. Tsibulsky, F. Delaunay et al., “Circadian and glucocorticoid regulation of Rev-erbα expression in liver,” Endocrinology, vol. 141, no. 10, pp. 3799–3806, 2000. View at Google Scholar · View at Scopus
  90. H. Cho, X. Zhao, M. Hatori et al., “Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta,” Nature, vol. 485, pp. 123–127, 2012. View at Google Scholar
  91. N. Preitner, F. Damiola, Luis-Lopez-Molina et al., “The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator,” Cell, vol. 110, no. 2, pp. 251–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. T. K. Sato, S. Panda, L. J. Miraglia et al., “A functional genomics strategy reveals Rora as a component of the mammalian circadian clock,” Neuron, vol. 43, no. 4, pp. 527–537, 2004. View at Google Scholar
  93. P. Lau, S. J. Nixon, R. G. Parton, and G. E. Muscat, “RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR,” The Journal of Biological Chemistry, vol. 279, no. 35, pp. 36828–36840, 2004. View at Google Scholar
  94. H. R. Ueda, W. Chen, A. Adachi et al., “A transcription factor response element for gene expression during circadian night,” Nature, vol. 418, no. 6897, pp. 534–539, 2002. View at Google Scholar
  95. L. A. Solt, Y. Wang, S. Banerjee et al., “Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists,” Nature, vol. 485, pp. 62–68, 2012. View at Google Scholar
  96. S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARS in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Lefebvre, G. Chinetti, J. C. Fruchart, and B. Staels, “Sorting out the roles of PPARα in energy metabolism and vascular homeostasis,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 571–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Canaple, J. Rambaud, O. Dkhissi-Benyahya et al., “Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor α defines a novel positive feedback loop in the rodent liver circadian clock,” Molecular Endocrinology, vol. 20, no. 8, pp. 1715–1727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. I. Inoue, Y. Shinoda, M. Ikeda et al., “CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element,” Journal of Atherosclerosis and Thrombosis, vol. 12, no. 3, pp. 169–174, 2005. View at Google Scholar · View at Scopus
  100. R. Gutman, M. Barnea, L. Haviv, N. Chapnik, and O. Froy, “Peroxisome proliferator-activated receptor alpha (PPARalpha) activation advances locomotor activity and feeding daily rhythms in mice,” International Journal of Obesity, vol. 36, pp. 1131–1134, 2012. View at Google Scholar
  101. B. Grimaldi and P. Sassone-Corsi, “Circadian rhythms: metabolic clockwork,” Nature, vol. 447, no. 7143, pp. 386–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Liu, S. Li, T. Liu, J. Borjigin, and J. D. Lin, “Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism,” Nature, vol. 447, no. 7143, pp. 477–481, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Carling, “AMP-activated protein kinase: balancing the scales,” Biochimie, vol. 87, no. 1, pp. 87–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. D. G. Hardie, S. A. Hawley, and J. W. Scott, “AMP-activated protein kinase—development of the energy sensor concept,” Journal of Physiology, vol. 574, no. 1, pp. 7–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. H. U. Jee, S. Yang, S. Yamazaki et al., “Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iε (CKIε)-dependent degradation of clock protein mPer2,” Journal of Biological Chemistry, vol. 282, no. 29, pp. 20794–20798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. K. A. Lamia, U. M. Sachdeva, L. Di Tacchio et al., “AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation,” Science, vol. 326, no. 5951, pp. 437–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. O. Froy and R. Miskin, “Effect of feeding regimens on circadian rhythms: implications for aging and longevity,” Aging, vol. 2, no. 1, pp. 7–27, 2010. View at Google Scholar · View at Scopus
  108. M. Barnea, L. Haviv, R. Gutman, N. Chapnik, Z. Madar, and O. Froy, “Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner,” Biochim Biophys Acta, vol. 1822, pp. 1796–1180, 2012. View at Google Scholar
  109. C. Canto and J. Auwerx, “Caloric restriction, SIRT1 and longevity,” Trends in Endocrinology and Metabolism, vol. 20, no. 7, pp. 325–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. M. C. Haigis and L. P. Guarente, “Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction,” Genes and Development, vol. 20, no. 21, pp. 2913–2921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Cantó, Z. Gerhart-Hines, J. N. Feige et al., “AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity,” Nature, vol. 458, no. 7241, pp. 1056–1060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Asher, D. Gatfield, M. Stratmann et al., “SIRT1 regulates circadian clock gene expression through PER2 deacetylation,” Cell, vol. 134, no. 2, pp. 317–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. Y. Nakahata, M. Kaluzova, B. Grimaldi et al., “The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control,” Cell, vol. 134, no. 2, pp. 329–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Nakahata, S. Sahar, G. Astarita, M. Kaluzova, and P. Sassone-Corsi, “Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1,” Science, vol. 324, no. 5927, pp. 654–657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Rutter, M. Reick, L. C. Wu, and S. L. McKnight, “Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors,” Science, vol. 293, no. 5529, pp. 510–514, 2001. View at Google Scholar
  116. J. Rutter, M. Reick, and S. L. McKnight, “Metabolism and the control of circadian rhythms,” Annual Review of Biochemistry, vol. 71, pp. 307–331, 2002. View at Google Scholar
  117. K. Oishi, G. I. Atsumi, S. Sugiyama et al., “Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice,” FEBS Letters, vol. 580, no. 1, pp. 127–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Oishi, N. Ohkura, M. Wakabayashi et al., “CLOCK is involved in obesity-induced disordered fibrinolysis in ob/ob mice by regulating PAI-1 gene expression,” Journal of Thrombosis and Haemostasis, vol. 4, no. 8, pp. 1774–1780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. R. D. Rudic, P. McNamara, A. M. Curtis et al., “BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis,” PLoS Biology, vol. 2, no. 11, article e377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Yang, A. Liu, A. Weidenhammer et al., “The role of mPer2 clock gene in glucocorticoid and feeding rhythms,” Endocrinology, vol. 150, no. 5, pp. 2153–2160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. V. M. Cassone and F. K. Stephan, “Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight,” Nutrition, vol. 18, no. 10, pp. 814–819, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. F. K. Stephan, “The “other” circadian system: food as a Zeitgeber,” Journal of Biological Rhythms, vol. 17, no. 4, pp. 284–292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. O. Froy, N. Chapnik, and R. Miskin, “Long-lived αMUPA transgenic mice exhibit pronounced circadian rhythms,” American Journal of Physiology, vol. 291, no. 5, pp. E1017–E1024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. B. Grasl-Kraupp, W. Bursch, B. Ruttkay-Nedecky, A. Wagner, B. Lauer, and R. Schulte-Hermann, “Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carcinogenesis in rat liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9995–9999, 1994. View at Publisher · View at Google Scholar · View at Scopus
  125. K. I. Honma, S. Honma, and T. Hiroshige, “Critical role of food amount for prefeeding corticosterone peak in rats,” The American Journal of Physiology, vol. 245, no. 3, pp. R339–R344, 1983. View at Google Scholar · View at Scopus
  126. A. Boulamery-Velly, N. Simon, J. Vidal, J. Mouchet, and B. Bruguerolle, “Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats,” Chronobiology International, vol. 22, no. 3, pp. 489–498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Hara, K. Wan, H. Wakamatsu et al., “Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus,” Genes to Cells, vol. 6, no. 3, pp. 269–278, 2001. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Hirao, S. Arakawa, K. Watanabe, K. Ito, and T. Furukawa, “Effects of restricted feeding on daily fluctuations of hepatic functions including P450 monooxygenase activities in rats,” Journal of Biological Chemistry, vol. 281, no. 6, pp. 3165–3171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. R. E. Mistlberger, “Circadian food-anticipatory activity: formal models and physiological mechanisms,” Neuroscience and Biobehavioral Reviews, vol. 18, no. 2, pp. 171–195, 1994. View at Publisher · View at Google Scholar · View at Scopus
  130. C. A. Comperatore and F. K. Stephan, “Entrainment of duodenal activity to periodic feeding,” Journal of Biological Rhythms, vol. 2, no. 3, pp. 227–242, 1987. View at Google Scholar · View at Scopus
  131. M. Saito, E. Murakami, and M. Suda, “Circadian rhythms in disaccharidases of rat small intestine and its relation to food intake,” Biochimica et Biophysica Acta, vol. 421, no. 1, pp. 177–179, 1976. View at Google Scholar · View at Scopus
  132. K. Horikawa, Y. Minami, M. Iijima, M. Akiyama, and S. Shibata, “Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions,” Neuroscience, vol. 134, no. 1, pp. 335–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. K. Oishi, K. Miyazaki, and N. Ishida, “Functional CLOCK is not involved in the entrainment of peripheral clocks to the restricted feeding: entrainable expression of mPer2 and BMAL1 mRNAs in the heart of Clock mutant mice on Jcl:ICR background,” Biochemical and Biophysical Research Communications, vol. 298, no. 2, pp. 198–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. F. K. Stephan, J. M. Swann, and C. L. Sisk, “Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus,” Behavioral and Neural Biology, vol. 25, no. 3, pp. 346–363, 1979. View at Google Scholar · View at Scopus
  135. F. Damiola, N. Le Minli, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler, “Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus,” Genes and Development, vol. 14, no. 23, pp. 2950–2961, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. K. A. Stokkan, S. Yamazaki, H. Tei, Y. Sakaki, and M. Menaker, “Entrainment of the circadian clock in the liver by feeding,” Science, vol. 291, no. 5503, pp. 490–493, 2001. View at Publisher · View at Google Scholar · View at Scopus
  137. J. D. Lin, C. Liu, and S. Li, “Integration of energy metabolism and the mammalian clock,” Cell Cycle, vol. 7, no. 4, pp. 453–457, 2008. View at Google Scholar · View at Scopus
  138. H. Sherman, I. Frumin, R. Gutman et al., “Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers,” Journal of Cellular and Molecular Medicine, vol. 15, pp. 2745–2759, 2011. View at Google Scholar
  139. H. Sherman, Y. Genzer, R. Cohen, N. Chapnik, Z. Madar, and O. Froy, “Timed high-fat diet resets circadian metabolism and prevents obesity,” FASEB Journal, vol. 26, pp. 3493–3502, 2012. View at Google Scholar
  140. J. J. Gooley, A. Schomer, and C. B. Saper, “The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms,” Nature Neuroscience, vol. 9, no. 3, pp. 398–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. G. J. Landry, M. M. Simon, I. C. Webb, and R. E. Mistlberger, “Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats,” American Journal of Physiology, vol. 290, no. 6, pp. R1527–R1534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. G. J. Landry, G. R. Yamakawa, I. C. Webb, R. J. Mear, and R. E. Mistlberger, “The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats,” Journal of Biological Rhythms, vol. 22, no. 6, pp. 467–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Mieda, S. C. Williams, J. A. Richardson, K. Tanaka, and M. Yanagisawa, “The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 12150–12155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. A. J. Davidson, S. L. T. Cappendijk, and F. K. Stephan, “Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats,” American Journal of Physiology, vol. 278, no. 5, pp. R1296–R1304, 2000. View at Google Scholar · View at Scopus
  145. J. Mendoza, M. Angeles-Castellanos, and C. Escobar, “Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats,” Behavioural Brain Research, vol. 158, no. 1, pp. 133–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. R. E. Mistlberger and D. G. Mumby, “The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies,” Behavioural Brain Research, vol. 47, no. 2, pp. 159–168, 1992. View at Google Scholar · View at Scopus
  147. A. J. Davidson, “Search for the feeding-entrainable circadian oscillator: a complex proposition,” American Journal of Physiology, vol. 290, no. 6, pp. R1524–R1526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. R. E. Mistlberger and E. G. Marchant, “Enhanced food-anticipatory circadian rhythms in the genetically obese Zucker rat,” Physiology and Behavior, vol. 66, no. 2, pp. 329–335, 1999. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Pitts, E. Perone, and R. Silver, “Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice,” American Journal of Physiology, vol. 285, no. 1, pp. R57–R67, 2003. View at Google Scholar · View at Scopus
  150. J. S. Pendergast, W. Nakamura, R. C. Friday, F. Hatanaka, T. Takumi, and S. Yamazaki, “Robust food anticipatory activity in BMAL1-deficient mice,” PLoS ONE, vol. 4, no. 3, Article ID e4860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. K. F. Storch and C. J. Weitz, “Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6808–6813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. C. A. Feillet, J. A. Ripperger, M. C. Magnone, A. Dulloo, U. Albrecht, and E. Challet, “Lack of food anticipation in Per2 mutant mice,” Current Biology, vol. 16, no. 20, pp. 2016–2022, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. R. E. Mistlberger, “Circadian rhythms: perturbing a food-entrained clock,” Current Biology, vol. 16, no. 22, pp. R968–R969, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. E. J. Masoro, I. Shimokawa, Y. Higami, C. A. McMahan, and B. P. Yu, “Temporal pattern of food intake not a factor in the retardation of aging processes by dietary restriction,” Journals of Gerontology A, vol. 50, no. 1, pp. B48–B53, 1995. View at Google Scholar · View at Scopus
  155. J. Koubova and L. Guarente, “How does calorie restriction work?” Genes and Development, vol. 17, no. 3, pp. 313–321, 2003. View at Publisher · View at Google Scholar · View at Scopus
  156. E. J. Masoro, “Overview of caloric restriction and ageing,” Mechanisms of Ageing and Development, vol. 126, no. 9, pp. 913–922, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. G. S. Roth, M. A. Lane, D. K. Ingram et al., “Biomarkers of caloric restriction may predict longevity in humans,” Science, vol. 297, no. 5582, p. 811, 2002. View at Publisher · View at Google Scholar · View at Scopus
  158. G. S. Roth, J. A. Mattison, M. A. Ottinger, M. E. Chachich, M. A. Lane, and D. K. Ingram, “Aging in rhesus monkeys: relevance to human health interventions,” Science, vol. 305, no. 5689, pp. 1423–1426, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Weindruch and R. S. Sohal, “Caloric intake and aging,” The New England Journal of Medicine, vol. 337, no. 14, pp. 986–994, 1997. View at Publisher · View at Google Scholar · View at Scopus
  160. E. Challet, I. Caldelas, C. Graff, and P. Pévet, “Synchronization of the molecular clockwork by light- and food-related cues in mammals,” Biological Chemistry, vol. 384, no. 5, pp. 711–719, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. E. Challet, L. C. Solberg, and F. W. Turek, “Entrainment in calorie-restricted mice: conflicting zeitgebers and free- running conditions,” American Journal of Physiology, vol. 274, no. 6, pp. R1751–R1761, 1998. View at Google Scholar · View at Scopus
  162. J. Mendoza, C. Graff, H. Dardente, P. Pevet, and E. Challet, “Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle,” Journal of Neuroscience, vol. 25, no. 6, pp. 1514–1522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. D. Resuehr and J. Olcese, “Caloric restriction and melatonin substitution: effects on murine circadian parameters,” Brain Research, vol. 1048, no. 1-2, pp. 146–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. J. Mendoza, K. Drevet, P. Pévet, and E. Challet, “Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction,” Journal of Neuroendocrinology, vol. 20, no. 2, pp. 251–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  165. O. Froy, N. Chapnik, and R. Miskin, “Relationship between calorie restriction and the biological clock: lessons from long-lived transgenic mice,” Rejuvenation Research, vol. 11, no. 2, pp. 467–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. R. Michael Anson, Z. Guo, R. de Cabo et al., “Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6216–6220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  167. O. Descamps, J. Riondel, V. Ducros, and A. M. Roussel, “Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting,” Mechanisms of Ageing and Development, vol. 126, no. 11, pp. 1185–1191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  168. C. L. Goodrick, D. K. Ingram, M. A. Reynolds, J. R. Freeman, and N. Cider, “Effects of intermittent feeding upon weight and lifespan in inbred mice: interaction of genotype and age,” Mechanisms of Ageing and Development, vol. 55, no. 1, pp. 69–87, 1990. View at Publisher · View at Google Scholar · View at Scopus
  169. I. Ahmet, R. Wan, M. P. Mattson, E. G. Lakatta, and M. Talan, “Cardioprotection by intermittent fasting in rats,” Circulation, vol. 112, no. 20, pp. 3115–3121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Contestabile, E. Ciani, and A. Contestabile, “Dietary restriction differentially protects from neurodegeneration in animal models of excitotoxicity,” Brain Research, vol. 1002, no. 1-2, pp. 162–166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  171. D. E. Mager, R. Wan, M. Brown et al., “Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats,” FASEB Journal, vol. 20, no. 6, pp. 631–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. M. P. Mattson, “Energy intake, meal frequency, and health: a neurobiological perspective,” Annual Review of Nutrition, vol. 25, pp. 237–260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  173. S. Sharma and G. Kaur, “Neuroprotective potential of dietary restriction against kainate-induced excitotoxicity in adult male Wistar rats,” Brain Research Bulletin, vol. 67, no. 6, pp. 482–491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  174. M. P. Mattson, “Dietary factors, hormesis and health,” Ageing Research Reviews, vol. 7, no. 1, pp. 43–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. M. P. Mattson, W. Duan, R. Wan, and Z. Guo, “Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations,” NeuroRx, vol. 1, no. 1, pp. 111–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. O. Froy, N. Chapnik, and R. Miskin, “Effect of intermittent fasting on circadian rhythms in mice depends on feeding time,” Mechanisms of Ageing and Development, vol. 130, no. 3, pp. 154–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. H. Yanagihara, H. Ando, Y. Hayashi, Y. Obi, and A. Fujimura, “High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues,” Chronobiology International, vol. 23, no. 5, pp. 905–914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  178. A. Kohsaka, A. D. Laposky, K. M. Ramsey et al., “High-fat diet disrupts behavioral and molecular circadian rhythms in mice,” Cell Metabolism, vol. 6, no. 5, pp. 414–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  179. M. Barnea, Z. Madar, and O. Froy, “High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver,” Endocrinology, vol. 150, no. 1, pp. 161–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. M. Barnea, Z. Madar, and O. Froy, “High-fat diet followed by fasting disrupts circadian expression of adiponectin signaling pathway in muscle and adipose tissue,” Obesity, vol. 18, no. 2, pp. 230–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. P. Cano, V. Jimenez-Ortega, A. Larrad, C. F. R. Toso, D. P. Cardinali, and A. I. Esquifino, “Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats,” Endocrine, vol. 33, no. 2, pp. 118–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. M. C. Cha, C. J. Chou, and C. N. Boozer, “High-fat diet feeding reduces the diurnal variation of plasma leptin concentration in rats,” Metabolism: Clinical and Experimental, vol. 49, no. 4, pp. 503–507, 2000. View at Google Scholar · View at Scopus
  183. P. J. Havel, R. Townsend, L. Chaump, and K. Teff, “High-fat meals reduce 24-h circulating leptin concentrations in women,” Diabetes, vol. 48, no. 2, pp. 334–341, 1999. View at Publisher · View at Google Scholar · View at Scopus
  184. J. Mendoza, P. Pévet, and E. Challet, “High-fat feeding alters the clock synchronization to light,” Journal of Physiology, vol. 586, no. 24, pp. 5901–5910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  185. M. Hatori, C. Vollmers, A. Zarrinpar et al., “Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet,” Cell Metabolism, vol. 15, pp. 848–860, 2012. View at Google Scholar