Table of Contents
ISRN Nanotechnology
Volume 2012, Article ID 454072, 11 pages
http://dx.doi.org/10.5402/2012/454072
Research Article

Evaluation of Viability and Proliferation Profiles on Macrophages Treated with Silica Nanoparticles In Vitro via Plate-Based, Flow Cytometry, and Coulter Counter Assays

1Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 64, Room 2086 HFD-910, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
2Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8520, Gaithersburg, MD 20899-850, USA

Received 27 June 2012; Accepted 26 August 2012

Academic Editors: F. Grasset, A. Hu, W. Lu, and Y. Zhang

Copyright © 2012 S. Bancos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Chidambaram, R. Manavalan, and K. Kathiresan, “Nanotherapeutics to overcome conventional cancer chemotherapy limitations,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 1, pp. 67–77, 2011. View at Google Scholar · View at Scopus
  2. R. Sinha, G. J. Kim, S. Nie, and D. M. Shin, “Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery,” Molecular Cancer Therapeutics, vol. 5, no. 8, pp. 1909–1917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Blanco, A. Hsiao, A. P. Mann, M. G. Landry, F. Meric-Bernstam, and M. Ferrari, “Nanomedicine in cancer therapy: innovative trends and prospects,” Cancer Science, vol. 102, no. 7, pp. 1247–1252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. W. L. Monsky, D. S. Vien, and D. P. Link, “Nanotechnology development and utilization: a primer for diagnostic and interventional radiologists,” Radiographics, vol. 31, no. 5, pp. 1449–1462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Katteboinaa, V. S. R. Chandrasekhar P, and S. Balaji, “Drug nanocrystals: a novel formulation approach for poorly soluble drugs,” International Journal of PharmTech Research, vol. 1, no. 3, pp. 682–694, 2009. View at Google Scholar · View at Scopus
  6. J. M. McKim, “Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance,” Combinatorial Chemistry and High Throughput Screening, vol. 13, no. 2, pp. 188–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Damoiseaux, S. George, M. Li et al., “No time to lose—high throughput screening to assess nanomaterial safety,” Nanoscale, vol. 3, no. 4, pp. 1345–1360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Y. Shaw, E. C. Westly, M. J. Pittet, A. Subramanian, S. L. Schreiber, and R. Weissleder, “Perturbational profiling of nanomaterial biologic activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 21, pp. 7387–7392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Kroll, C. Dierker, C. Rommel et al., “Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays,” Particle and Fibre Toxicology, vol. 23, article 9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. George, T. Xia, R. Rallo et al., “Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials,” ACS Nano, vol. 5, no. 3, pp. 1805–1817, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Keene, R. J. Allaway, N. Sadrieh, and K. M. Tyner, “Gold nanoparticle trafficking of typically excluded compounds across the cell membrane in JB6 Cl 41-5a cells causes assay interference,” Nanotoxicology, vol. 5, no. 4, pp. 469–478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Kong, J. H. Seog, L. M. Graham, and S. B. Lee, “Experimental considerations on the cytotoxicity of nanoparticles,” Nanomedicine, vol. 6, no. 5, pp. 929–941, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. J. Oostingh, E. Casals, P. Italiani et al., “Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects,” Particle and Fibre Toxicology, vol. 8, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. D. B. Warheit, C. M. Sayes, and K. L. Reed, “Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures?” Environmental Science and Technology, vol. 43, no. 20, pp. 7939–7945, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Hoskins, L. Wang, W. P. Cheng, and A. Cuschieri, “Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: which tests and what protocols?” Nanoscale Research Letters, vol. 7, Article ID 77, pp. 1–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Wohlleben, S. N. Kolle, L.-C. Hasenkamp et al., “Artifacts by marker enzyme adsorption on nanomaterials in cytotoxicity assays with tissue cultures,” Journal of Physics, vol. 304, no. 1, Article ID 012061, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Kroll, M. H. Pillukat, D. Hahn, and J. Schnekenburger, “Current in vitro methods in nanoparticle risk assessment: limitations and challenges,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 72, no. 2, pp. 370–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. K. Zaqout, T. Sumizawa, H. Igisu, D. Wilson, T. Myojo, and S. Ueno, “Binding of titanium dioxide nanoparticles to lactate dehydrogenase,” Environmental Health and Preventive Medicine, vol. 17, no. 4, pp. 341–345, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Han, R. Gelein, N. Corson et al., “Validation of an LDH assay for assessing nanoparticle toxicity,” Toxicology, vol. 287, no. 1–3, pp. 99–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, and G. Chambers, “Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity,” Carbon, vol. 45, no. 7, pp. 1425–1432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Dhawan and V. Sharma, “Toxicity assessment of nanomaterials: methods and challenges,” Analytical and Bioanalytical Chemistry, vol. 398, no. 2, pp. 589–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Wahl, N. Daum, H. L. Ohrem, and C. M. Lehr, “Novel luminescence assay offers new possibilities for the risk assessment of silica nanoparticles,” Nanotoxicology, vol. 2, no. 4, pp. 243–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Santra, “Fluorescent silica nanoparticles for cancer imaging,” Methods in Molecular Biology, vol. 624, pp. 151–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Couleaud, D. Bechet, R. Vanderesse et al., “Functionalized silica-based nanoparticles for photodynamic therapy,” Nanomedicine, vol. 6, no. 6, pp. 995–1009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Burns, H. Ow, and U. Wiesner, “Fluorescent core-shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology,” Chemical Society Reviews, vol. 35, no. 11, pp. 1028–1042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Lu, M. Liong, Z. Li, J. I. Zink, and F. Tamanoi, “Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals,” Small, vol. 6, no. 16, pp. 1794–1805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Hom, J. Lu, and F. Tamanoi, “Silica nanoparticles as a delivery system for nucleic acid-based reagents,” Journal of Materials Chemistry, vol. 19, no. 35, pp. 6308–6316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Hom, J. Lu, M. Liong et al., “Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells,” Small, vol. 6, no. 11, pp. 1185–1190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu, and V. S. Y. Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1278–1288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Rosenholm, V. Mamaeva, C. Sahlgren, and M. Lindén, “Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage,” Nanomedicine, vol. 7, no. 1, pp. 111–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Napierska, L. C. J. Thomassen, D. Lison, J. A. Martens, and P. H. Hoet, “The nanosilica hazard: another variable entity,” Particle and Fibre Toxicology, vol. 7, article 39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Aubert, F. Grasset, S. Mornet et al., “Functional silica nanoparticles synthesized by water-in-oil microemulsion processes,” Journal of Colloid and Interface Science, vol. 341, no. 2, pp. 201–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. L. Zhao, Z. Li, S. Kabehie, Y. Y. Botros, J. F. Stoddart, and J. I. Zink, “pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles,” Journal of the American Chemical Society, vol. 132, no. 37, pp. 13016–13025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Uboldi, G. Giudetti, F. Broggi, D. Gilliland, J. Ponti, and F. Rossi, “Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts,” Mutation Research, vol. 745, no. 1-2, pp. 11–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. B. M. Mohamed, N. K. Verma, A. Prina-Mello et al., “Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity,” Journal of Nanobiotechnology, vol. 9, article 29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. Akhtar, M. Ahamed, S. Kumar et al., “Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells,” Toxicology, vol. 276, no. 2, pp. 95–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. H. J. Eom and J. Choi, “SiO2 nanoparticles induced cytotoxicity by oxidative stress in human bronchial epithelial cell, beas-2B,” Environmental Health and Toxicology, vol. 26, article e2011013, 2011. View at Google Scholar
  38. T. Yu, A. Malugin, and H. Ghandehari, “Impact of silica nanoparticle design on cellular toxicity and hemolytic activity,” ACS Nano, vol. 5, no. 7, pp. 5717–5728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Fisichella, H. Dabboue, S. Bhattacharyya et al., “Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes,” Toxicology in Vitro, vol. 23, no. 4, pp. 697–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D. H. Tsai, R. A. Zangmeister, L. F. Pease, M. J. Tarlov, and M. R. Zachariah, “Gas-phase ion-mobility characterization of SAM-functionalized Au nanoparticles,” Langmuir, vol. 24, no. 16, pp. 8483–8490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. D. H. Tsai, L. F. Pease, R. A. Zangmeister, M. J. Tarlov, and M. R. Zachariah, “Aggregation kinetics of colloidal particles measured by gas-phase differential mobility analysis,” Langmuir, vol. 25, no. 1, pp. 140–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. N. A. Monteiro-Riviere, A. O. Inman, and L. W. Zhang, “Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line,” Toxicology and Applied Pharmacology, vol. 234, no. 2, pp. 222–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. C. Pagliacci, F. Spinozzi, G. Migliorati et al., “Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival,” European Journal of Cancer A, vol. 29, no. 11, pp. 1573–1577, 1993. View at Google Scholar · View at Scopus
  44. J. T. Sims and R. Plattner, “MTT assays cannot be utilized to study the effects of STI571/Gleevec on the viability of solid tumor cell lines,” Cancer Chemotherapy and Pharmacology, vol. 64, no. 3, pp. 629–633, 2009. View at Publisher · View at Google Scholar · View at Scopus