Table of Contents
ISRN Signal Processing
Volume 2012 (2012), Article ID 457152, 10 pages
http://dx.doi.org/10.5402/2012/457152
Research Article

Spectral Intrinsic Decomposition Method for Adaptive Signal Representation

1Laboratoire Images, Signaux et Systémes Intelligents (LISSI-E.A.3956), Université Paris Est Créteil Val de Marne, France
2Laboratoire d’Analyse, Numérique et d’Informatique (LANI), Universite Gaston Berger (UGB), Saint-Louis BP 234, Senegal
3Ecole Polytechnique de Thiès, Thiès BP A10, Senegal
4Département de Mathématique et Informatique, Faculté des Scinces et Technique, Université Cheikh Anta Diop de Dakar, Dakar BP 5005, Senegal

Received 12 October 2012; Accepted 31 October 2012

Academic Editors: C.-C. Hu and K. Wang

Copyright © 2012 Oumar Niang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Boashash, Time Frequence Signal Analysis and Processing, Elsevier, 2003.
  2. N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London A, vol. 454, no. 1971, pp. 903–995, 1998. View at Google Scholar · View at Scopus
  3. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61, 1998. View at Google Scholar · View at Scopus
  4. F. van Belzen and S. Weiland, “Reconstruction and approximation of multidimensional signals described by proper orthogonal decompositions,” IEEE Transactions on Signal Processing, vol. 56, no. 2, pp. 576–587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Deléchelle, J. Lemoine, and O. Niang, “Empirical mode decomposition: an analytical approach for sifting process,” IEEE Signal Processing Letters, vol. 12, no. 11, pp. 764–767, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Niang, Empirical mode decomposition: contribution à la modélisation mathématique et application en traitement du signal et l'image [Ph.D. thesis], University of Paris, Créteil, France, 2007.
  7. O. Niang, E. Delechelle, and J. Lemoine, “A spectral approach for sifting process in empirical mode decomposition,” IEEE Transactions on Signal Processing, vol. 58, no. 11, pp. 5612–5623, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Niang, A. Thioune, M. C. El-Gueirea, E. Delchelle, and J. Lemoine, “Partial differential equation-based approach for empirical mode decomposition: application on image analysis,” IEEE Transaction on Image Processing, vol. 21, no. 9, pp. 3991–4001, 2012. View at Google Scholar