Table of Contents
ISRN Urology
Volume 2012, Article ID 458238, 11 pages
http://dx.doi.org/10.5402/2012/458238
Review Article

Antioncogenic Effects of Transient Receptor Potential Vanilloid 1 in the Progression of Transitional Urothelial Cancer of Human Bladder

1Section of Experimental Medicine, School of Pharmacy, University of Camerino, Madonna delle Carceri Street 9, 62032 Camerino, Italy
2Department of Molecular Medicine, Sapienza University of Rome, Regina Elena Avenue 324, 00161 Rome, Italy

Received 26 September 2011; Accepted 24 October 2011

Academic Editors: A. Papatsoris and K. H. Tsui

Copyright © 2012 Giorgio Santoni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature, vol. 389, no. 6653, pp. 816–824, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. Szallasi and P. M. Blumberg, “Vanilloid (Capsaicin) receptors and mechanisms,” Pharmacological Reviews, vol. 51, no. 2, pp. 159–211, 1999. View at Google Scholar · View at Scopus
  3. M. Tominaga, M. J. Caterina, A. B. Malmberg et al., “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron, vol. 21, no. 3, pp. 531–543, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Gunthorpe, M. H. Harries, R. K. Prinjha, J. B. Davis, and A. Randall, “Voltage- and time-dependent properties of the recombinant rat vanilloid receptor (rVR1),” Journal of Physiology, vol. 525, no. 3, pp. 747–759, 2000. View at Google Scholar · View at Scopus
  5. A. S. Piper, J. C. Yeats, S. Bevan, and R. J. Docherty, “A study of the voltage dependence of capsaicin-activated membrane currents in rat sensory neurones before and after acute desensitization,” Journal of Physiology, vol. 518, no. 3, pp. 721–733, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annual Review of Neuroscience, vol. 24, pp. 487–517, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. H. H. Chuang, E. D. Prescott, H. Kong et al., “Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition,” Nature, vol. 411, no. 6840, pp. 957–962, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. D. E. Clapham, “TRP channels as cellular sensors,” Nature, vol. 426, no. 6966, pp. 517–524, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. Jung, J. S. Shin, S. Y. Lee et al., “Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding,” Journal of Biological Chemistry, vol. 279, no. 8, pp. 7048–7054, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. G. Bhave, H. J. Hu, K. S. Glauner et al., “Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1),” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12480–12485, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. C. M. Flores and M. R. Vasko, “The deorphanization of TRPV1 and the emergence of octadecadienoids as a new class of lipid transmitters,” Molecular Interventions, vol. 10, no. 3, pp. 137–140, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. L. J. Macpherson, B. H. Geierstanger, V. Viswanath et al., “The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin,” Current Biology, vol. 15, no. 10, pp. 929–934, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Tominaga and T. Tominaga, “Structure and function of TRPV1,” Pflugers Archiv European Journal of Physiology, vol. 451, no. 1, pp. 143–150, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. I. S. Ramsey, M. Delling, and D. E. Clapham, “An introduction to TRP channels,” Annual Review of Physiology, vol. 68, pp. 619–647, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. B. J. Reaves and A. J. Wolstenholme, “The TRP channel superfamily: insights into how structure, protein-lipid interactions and localization influence function,” Biochemical Society Transactions, vol. 35, no. 1, pp. 77–80, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. Owsianik, K. Talavera, T. Voets, and B. Nilius, “Permeation and selectivity of TRP channels,” Annual Review of Physiology, vol. 68, pp. 685–717, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. Rosenbaum, M. Awaya, and S. E. Gordon, “Subunit modification and association in VR1 ion channels,” BMC Neuroscience, vol. 3, article 4, 2002. View at Publisher · View at Google Scholar
  18. A. J. Oseguera, L. D. Islas, R. García-Villegas, and T. Rosenbaum, “On the mechanism of TBA block of the TRPV1 channel,” Biophysical Journal, vol. 92, no. 11, pp. 3901–3914, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. T. Voets, G. Droogmans, U. Wissenbach, A. Janssens, V. Flockerzi, and B. Nilius, “The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels,” Nature, vol. 430, no. 7001, pp. 748–754, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. Lu, D. Henderson, L. Liu, P. H. Reinhart, and S. A. Simon, “TRPV1b, a functional human vanilloid receptor splice variant,” Molecular Pharmacology, vol. 67, no. 4, pp. 1119–1127, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. H. Vos, T. R. Neelands, H. A. McDonald et al., “TRPV1b overexpression negatively regulates TRPV1 responsiveness to capsaicin, heat and low pH in HEK293 cells,” Journal of Neurochemistry, vol. 99, no. 4, pp. 1088–1102, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. R. J. A. Helliwell, L. M. McLatchie, M. Clarke, J. Winter, S. Bevan, and P. McIntyre, “Capsaicin sensitivity is associated with the expression of the vanilloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia,” Neuroscience Letters, vol. 250, no. 3, pp. 177–180, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Amantini, M. Mosca, R. Lucciarini et al., “Distinct thymocyte subsets express the vanilloid receptor VR1 that mediates capsaicin-induced apoptotic cell death,” Cell Death and Differentiation, vol. 11, no. 12, pp. 1342–1356, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. K. Inoue, S. Koizumi, S. Fuziwara, S. Denda, K. Inoue, and M. Denda, “Functional vanilloid receptors in cultured normal human epidermal keratinocytes,” Biochemical and Biophysical Research Communications, vol. 291, no. 1, pp. 124–129, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. S. Ständer, C. Moormann, M. Schumacher et al., “Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures,” Experimental Dermatology, vol. 13, no. 3, pp. 129–139, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. E. Bodó, T. Bíró, A. Telek et al., “A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control,” American Journal of Pathology, vol. 166, no. 4, pp. 985–998, 2005. View at Google Scholar · View at Scopus
  27. Y. X. Wang, J. Wang, C. Wang et al., “Functional expression of transient receptor potential vanilloid-related channels in chronically hypoxic human pulmonary arterial smooth muscle cells,” Journal of Membrane Biology, vol. 223, no. 3, pp. 151–159, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. T. Bíró, E. Bodó, A. Telek et al., “Hair cycle control by vanilloid receptor-1 (TRPV1): evidence from TRPV1 knockout mice,” Journal of Investigative Dermatology, vol. 126, no. 8, pp. 1909–1912, 2006. View at Publisher · View at Google Scholar · View at PubMed
  29. S. V. Siegmund, H. Uchinami, Y. Osawa, D. A. Brenner, and R. F. Schwabe, “Anandamide induces necrosis in primary hepatic stellate cells,” Hepatology, vol. 41, no. 5, pp. 1085–1095, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. L. A. Birder, A. J. Kanai, W. C. de Groat et al., “Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 23, pp. 13396–13401, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. C. Kalogris, S. Caprodossi, C. Amantini et al., “Expression of transient receptor potential vanilloid-1 (TRPV1) in urothelial cancers of human bladder: relation to clinicopathological and molecular parameters,” Histopathology, vol. 57, no. 5, pp. 744–752, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. A. Avelino, C. Cruz, I. Nagy, and F. Cruz, “Vanilloid receptor 1 expression in the rat urinary tract,” Neuroscience, vol. 109, no. 4, pp. 787–798, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Yamada, S. Ugawa, T. Ueda, Y. Ishida, K. Kajita, and S. Shimada, “Differential localizations of the transient receptor potential channels TRPV4 and TRPV1 in the mouse urinary bladder,” Journal of Histochemistry and Cytochemistry, vol. 57, no. 3, pp. 277–287, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. W. Everaerts, M. R. Sepúlveda, T. Gevaert, T. Roskams, B. Nilius, and D. De Ridder, “Where is TRPV1 expressed in the bladder, do we see the real channel?” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 379, no. 4, pp. 421–425, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. W. Everaerts, J. Vriens, G. Owsianik et al., “Functional characterization of transient receptor potential channels in mouse urothelial cells,” American Journal of Physiology, vol. 298, no. 3, pp. F692–F701, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. X. Xu, E. Gordon, Z. Lin, I. M. Lozinskaya, Y. Chen, and K. S. Thorneloe, “Functional TRPV4 channels and an absence of capsaicin-evoked currents in freshly-isolated, guinea-pig urothelial cells,” Channels, vol. 3, no. 3, pp. 156–160, 2009. View at Google Scholar · View at Scopus
  37. W. Yu and W. G. Hill, “Defining protein expression in the urothelium: a problem of more than transitional interest,” American Journal of Pathology, vol. 301, no. 5, pp. F932–F942, 2011. View at Google Scholar
  38. M. A. Schumacher and H. Eilers, “TRPV1 splice variants: structure and function,” Frontiers in Bioscience, vol. 15, pp. 872–882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Lazzeri, M. G. Vannucchi, C. Zardo et al., “Immunohistochemical evidence of vanilloid receptor 1 in normal human urinary bladder,” European Urology, vol. 46, no. 6, pp. 792–798, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. M. Lazzeri, M. G. Vannucchi, M. Spinelli et al., “Transient receptor potential vanilloid type 1 (TRPV1) expression changes from normal urothelium to transitional cell carcinoma of human bladder,” European Urology, vol. 48, no. 4, pp. 691–698, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. A. Charrua, C. Reguenga, J. M. Cordeiro et al., “Functional transient receptor potential vanilloid 1 is expressed in human urothelial cells,” Journal of Urology, vol. 182, no. 6, pp. 2944–2950, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. L. A. Birder, Y. Nakamura, S. Kiss et al., “Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1,” Nature Neuroscience, vol. 5, no. 9, pp. 856–860, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. A. Apostolidis, C. M. Brady, Y. Yiangou, J. Davis, C. J. Fowler, and P. Anand, “Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin,” Urology, vol. 65, no. 2, pp. 400–405, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. C. M. Brady, A. N. Apostolidis, M. Harper et al., “Parallel changes in bladder suburothelial vanilloid receptor TRPV1 and pan-neuronal marker PGP9.5 irnmunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment,” BJU International, vol. 93, no. 6, pp. 770–776, 2004. View at Publisher · View at Google Scholar · View at PubMed
  45. G. P. Gupta and J. Massagué, “Cancer metastasis: building a framework,” Cell, vol. 127, no. 4, pp. 679–695, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. R. A. Weinberg, Multistep Tumorigenesis, chapter 11, Garland Science, New York, NY, USA, 2006.
  47. H. L. Roderick and S. J. Cook, “Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival,” Nature Reviews Cancer, vol. 8, no. 5, pp. 361–375, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiological Reviews, vol. 87, no. 1, pp. 165–217, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. D. E. Clapham, L. W. Runnels, and C. Strübing, “The TRP ion channel family,” Nature Reviews Neuroscience, vol. 2, no. 6, pp. 387–396, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. C. Montell, L. Birnbaumer, V. Flockerzi et al., “A unified nomenclature for the superfamily of TRP cation channels,” Molecular Cell, vol. 9, no. 2, pp. 229–231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Cheng, C. Sun, and J. Zheng, “Heteromerization of TRP channel subunits: extending functional diversity,” Protein and Cell, vol. 1, no. 9, pp. 802–810, 2010. View at Publisher · View at Google Scholar · View at PubMed
  52. L. M. Duncan, J. Deeds, J. Hunter et al., “Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis,” Cancer Research, vol. 58, no. 7, pp. 1515–1520, 1998. View at Google Scholar · View at Scopus
  53. D. Fang and V. Setaluri, “Expression and up-regulation of alternatively spliced transcripts of melastatin, a melanoma metastasis-related gene, in human melanoma cells,” Biochemical and Biophysical Research Communications, vol. 279, no. 1, pp. 53–61, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. L. Tsavaler, M. H. Shapero, S. Morkowski, and R. Laus, “Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins,” Cancer Research, vol. 61, no. 9, pp. 3760–3769, 2001. View at Google Scholar · View at Scopus
  55. U. Wissenbach, B. A. Niemeyer, T. Fixemer et al., “Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer,” Journal of Biological Chemistry, vol. 276, no. 22, pp. 19461–19468, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. L. Zhang and G. J. Barritt, “TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function?” Endocrine-Related Cancer, vol. 13, no. 1, pp. 27–38, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. Jemal, T. Murray, E. Ward et al., “Cancer statistics, 2005,” Ca: A Cancer Journal for Clinicians, vol. 55, no. 1, pp. 10–30, 2005. View at Google Scholar · View at Scopus
  58. G. Sonpavde and C. N. Sternberg, “Treatment of metastatic urothelial cancer: opportunities for drug discovery and development,” BJU International, vol. 102, no. 9B, pp. 1354–1360, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. A. Lekas, T. G. Papathomas, A. G. Papatsoris, C. Deliveliotis, and A. C. Lazaris, “Novel therapeutics in metastatic bladder cancer,” Expert Opinion on Investigational Drugs, vol. 17, no. 12, pp. 1889–1899, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. C. Amantini, P. Ballarini, S. Caprodossi et al., “Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner,” Carcinogenesis, vol. 30, no. 8, pp. 1320–1329, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. Kim, C. Kang, Y. S. Chan et al., “TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1,” Journal of Neuroscience, vol. 26, no. 9, pp. 2403–2412, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. A. K. Ghosh and S. Basu, “Fas-associated factor 1 is a negative regulator in capsaicin induced cancer cell apoptosis,” Cancer Letters, vol. 287, no. 2, pp. 142–149, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. Z. H. Yang, X. H. Wang, H. P. Wang, L. Q. Hu, X. M. Zheng, and S. W. Li, “Capsaicin mediates cell death in bladder cancer T24 cells through reactive oxygen species production and mitochondrial depolarization,” Urology, vol. 75, no. 3, pp. 735–741, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. J. Chow, M. Norng, J. Zhang, and J. Chai, “TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells—mechanisms behind a possible new “hot” cancer treatment,” Biochimica et Biophysica Acta, vol. 1773, no. 4, pp. 565–576, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. S. Caprodossi, C. Amantini, M. Nabissi et al., “Capsaicin promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells,” Carcinogenesis, vol. 32, no. 5, pp. 686–694, 2011. View at Publisher · View at Google Scholar · View at PubMed
  66. J. S. Lee, J. S. Chang, J. Y. Lee, and J. A. Kim, “Capsaicin-induced apoptosis and reduced release of reactive oxygen species in MBT-2 murine bladder tumor cells,” Archives of pharmacal research, vol. 27, no. 11, pp. 1147–1153, 2004. View at Google Scholar · View at Scopus
  67. A. M. Sánchez, M. G. Sánchez, S. Malagarie-Cazenave, N. Olea, and I. Díaz-Laviada, “Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin,” Apoptosis, vol. 11, no. 1, pp. 89–99, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. N. R. Gavva, “Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1,” Trends in Pharmacological Sciences, vol. 29, no. 11, pp. 550–557, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. J. L. S. Au and M. G. Wientjes, “Combination intravesical hyperthermia and chemotherapy for bladder cancer,” Oncology, vol. 24, no. 12, pp. 1155–1160, 2010. View at Google Scholar · View at Scopus
  70. E. N. Rampersaud, Z. Vujaskovic, and B. A. Inman, “Hyperthermia as a treatment for bladder cancer,” Oncology, vol. 24, no. 12, pp. 1149–1155, 2010. View at Google Scholar · View at Scopus
  71. P. Sindhwani, J. A. Hampton, M. M. Baig, R. Keck, and S. H. Selman, “Curcumin prevents intravesical tumor implantation of the MBT-2 tumor cell line in C3H mice,” Journal of Urology, vol. 166, no. 4, pp. 1498–1501, 2001. View at Google Scholar · View at Scopus
  72. A. M. Bode, Y. Y. Cho, D. Zheng et al., “Transient receptor potential type vanilloid 1 suppresses skin carcinogenesis,” Cancer Research, vol. 69, no. 3, pp. 905–913, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. S. Liy, A. M. Bodey, F. Zhuy et al., “TRPV1-antagonist AMG9810 promotes mouse skin tumorigenesis through EGFR/Akt signaling,” Carcinogenesis, vol. 32, no. 5, pp. 779–785, 2011. View at Publisher · View at Google Scholar · View at PubMed
  74. G. Chadalapaka, I. Jutooru, R. Burghardt, and S. Safe, “Drugs that target specificity proteins downregulate epidermal growth factor receptor in bladder cancer cells,” Molecular Cancer Research, vol. 8, no. 5, pp. 739–750, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. M. K. Hwang, A. M. Bode, S. Byun et al., “Cocarcinogenic effect of capsaicin involves activation of EGFR signaling but not TRPV1,” Cancer Research, vol. 70, no. 17, pp. 6859–6869, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. C. Amantini, M. Mosca, M. Nabissi et al., “Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation,” Journal of Neurochemistry, vol. 102, no. 3, pp. 977–990, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. E. Contassot, M. Tenan, V. Schnüriger, M. F. Pelte, and P. Y. Dietrich, “Arachidonyl ethanolamide induces apoptosis of uterine cervix cancer cells via aberrantly expressed vanilloid receptor-1,” Gynecologic Oncology, vol. 93, no. 1, pp. 182–188, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. R. Ramer, J. Merkord, H. Rohde, and B. Hinz, “Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1,” Biochemical pharmacology, vol. 79, no. 7, pp. 955–966, 2010. View at Google Scholar · View at Scopus
  79. D. Gkika and N. Prevarskaya, “Molecular mechanisms of TRP regulation in tumor growth and metastasis,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 953–958, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. G. Czifra, A. Varga, K. Nyeste et al., “Increased expressions of cannabinoid receptor-1 and transient receptor potential vanilloid-1 in human prostate carcinoma,” Journal of Cancer Research and Clinical Oncology, vol. 135, no. 4, pp. 507–514, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. T. Fixemer, U. Wissenbach, V. Flockerzi, and H. Bonkhoff, “Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression,” Oncogene, vol. 22, no. 49, pp. 7858–7861, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. N. Prevarskaya, L. Zhang, and G. Barritt, “TRP channels in cancer,” Biochimica et Biophysica Acta, vol. 1772, no. 8, pp. 937–946, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. J. Furukawa, H. Miyake, I. Hara, A. Takenaka, and M. Fujisawa, “Clinical outcome of radical cystectomy for patients with pT4 bladder cancer,” International Journal of Urology, vol. 15, no. 1, pp. 58–61, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. X. Miao, G. Liu, X. Xu et al., “High expression of vanilloid receptor-1 is associated with better prognosis of patients with hepatocellular carcinoma,” Cancer Genetics and Cytogenetics, vol. 186, no. 1, pp. 25–32, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. A. Ligresti, A. S. Moriello, K. Starowicz et al., “Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma,” Journal of Pharmacology and Experimental Therapeutics, vol. 318, no. 3, pp. 1375–1387, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. M. B. Chancellor and W. C. de Groat, “Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder,” Journal of Urology, vol. 162, no. 1, pp. 3–11, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. L. A. Birder, “TRPs in bladder diseases,” Biochimica et Biophysica Acta, vol. 1772, no. 8, pp. 879–884, 2007. View at Publisher · View at Google Scholar · View at PubMed
  88. C. D. Cruz, A. Charrua, E. Vieira, J. Valente, A. Avelino, and F. Cruz, “Intrathecal delivery of resiniferatoxin (RTX) reduces detrusor overactivity and spinal expression of TRPV1 in spinal cord injured animals,” Experimental Neurology, vol. 214, no. 2, pp. 301–308, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. H. T. Liu and H. C. Kuo, “Increased expression of transient receptor potential vanilloid subfamily 1 in the bladder predicts the response to intravesical instillations of resiniferatoxin in patients with refractory idiopathic detrusor overactivity,” BJU International, vol. 100, no. 5, pp. 1086–1090, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus