International Scholarly Research Notices

International Scholarly Research Notices / 2012 / Article

Research Article | Open Access

Volume 2012 |Article ID 462731 | 12 pages | https://doi.org/10.5402/2012/462731

The Spectral Method for Solving Sine-Gordon Equation Using a New Orthogonal Polynomial

Academic Editor: P. J. GarcĆ­a Nieto
Received17 Sep 2011
Accepted12 Oct 2011
Published02 Feb 2012

Abstract

We have presented a numerical scheme for solving one-dimensional nonlinear sine-Gordon equation. We apply the spectral method with a basis of a new orthogonal polynomial which is orthogonal over the interval [0,1] with weighting function one. The results show the accuracy and efficiency of the proposed method.

1. Introduction

The sine-Gordon equation is a nonlinear hyperbolic partial differential equation (PDE). It was originally considered in the nineteenth century in the course of surface of constant negative curvature. This equation attracted a lot of attention in the 1970s due to the presence of soliton solutions [1, 2]. The sine-Gordon equation appears in a number of physical applications [3ā€“5], including applications in the chain of coupled pendulums and modelling the propagation of transverse electromagnetic (TEM) wave on a superconductor transmission system. Consider the one-dimensional nonlinear sine-Gordon equationšœ•2š‘¢(š‘„,š‘”)šœ•š‘”2=šœ•2š‘¢(š‘„,š‘”)šœ•š‘„2[]Ɨī€ŗš‘”āˆ’sin(š‘¢(š‘„,š‘”)),(š‘„,š‘”)āˆˆ0,10ī€»,,š‘‡(1.1) with the initial conditionsš‘¢ī€·š‘„,š‘”0ī€ø=š‘“0(š‘„),šœ•š‘¢ī€·šœ•š‘”š‘„,š‘”0ī€ø=š‘“1[](š‘„),š‘„āˆˆ0,1,(1.2) and the boundary conditionsš‘¢(0,š‘”)=š‘”0(š‘”),š‘¢(1,š‘”)=š‘”1(š‘”),š‘”ā‰„š‘”0.(1.3) In the last decade, several numerical schemes have been developed for solving (1.1), for instance, high-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods [3]. The authors of [6] proposed a numerical scheme for solving (1.1) using collocation and radial basis functions. Also, the boundary integral equation approach is used in [7]. Bratsos has proposed a numerical method for solving one-dimensional sine-Gordon equation and a third-order numerical scheme for the two-dimensional sine-Gordon equation in [8, 9], respectively. Also, in [10], a numerical scheme using radial basis function for the solution of two-dimensional sine-Gordon equation is used. In addition, several authors proposed spectral methods and Fourier pseudospectral method for solving nonlinear wave equation using a discrete Fourier series and Chebyshev orthogonal polynomials [11ā€“13].

In this paper, we have proposed a numerical scheme for solving (1.1) using spectral method with a basis of a new orthogonal polynomial. This polynomial is introduced by Chelyshkov in [14].

The outline of this paper is as follows. In Section 2, we introduce a new orthogonal polynomial. In Section 3, we apply spectral method for solving (1.1). In Section 4, we show the numerical results. Finally, a brief conclusion is given in Section 5.

2. The New Orthogonal Polynomial

In this section, we briefly introduce the new orthogonal polynomial, that is introduced in [14].

Let š‘› be a fixed whole number, and š‘ƒš‘› is a sequence of polynomial, that is,š‘ƒš‘›=ī€½š‘ƒš‘›š‘˜ī€¾0š‘˜=š‘›,š‘ƒš‘›š‘˜ā‰”š‘ƒš‘›š‘˜(š‘„)=š‘›ī“š‘™=š‘˜šœš‘›š‘˜š‘™š‘„š‘™,(2.1) that satisfy the orthogonality relationshipī€œ10š‘ƒš‘›š‘˜š‘ƒš‘›š‘™īƒÆ1š‘‘š‘„=0,š‘˜ā‰ š‘™,(š‘˜+š‘™+1),š‘˜=š‘™,(2.2) and standardizationī€·šœsignš‘›š‘˜š‘›ī€ø=(āˆ’1)š‘›āˆ’š‘˜.(2.3) The coefficient šœš‘›š‘˜š‘™ of the polynomial š‘ƒš‘›š‘˜ is defined by requirements (2.2), (2.3), and the Gram-Schmidt orthogonalization procedure (without normalization).The explicit definition of the polynomial š‘ƒš‘›š‘˜ is as follows:š‘ƒš‘›š‘˜(š‘„)=š‘›āˆ’š‘˜ī“š‘—=0(āˆ’1)š‘—āŽ›āŽœāŽœāŽš‘—āŽžāŽŸāŽŸāŽ āŽ›āŽœāŽœāŽāŽžāŽŸāŽŸāŽ š‘„š‘›āˆ’š‘˜š‘›+š‘˜+1+š‘—š‘›āˆ’š‘˜š‘˜+š‘—,š‘˜=0,1,ā€¦,š‘›.(2.4) This yields Rodrigueā€™s type representation as follows:š‘ƒš‘›š‘˜1(š‘„)=(1š‘›āˆ’š‘˜)!š‘„š‘˜+1š‘‘š‘›āˆ’š‘˜š‘‘š‘„š‘›āˆ’š‘˜ī€·š‘„š‘›+š‘˜+1(1āˆ’š‘„)š‘›āˆ’š‘˜ī€ø,š‘˜=0,1,ā€¦,š‘›,(2.5)

and the orthogonality relationship (2.2) is confirmed by applying (2.5). It also follows from (2.5) thatī€œ10š‘ƒš‘›š‘˜ī€œ(š‘„)š‘‘š‘„=10š‘„š‘›1š‘‘š‘„=.š‘›+1(2.6)This polynomial can be connected to a fixed set of the Jacobi polynomials š‘ƒš‘›(š›¼,š›½)(šœ‰) [15], that is,š‘ƒš‘›š‘˜=š‘„š‘›š‘ƒ(2š‘›,0)š‘˜āˆ’š‘›(1āˆ’2š‘„).(2.7)

3. The Proposed Method

In this section, the introduced orthogonal polynomial is applied as the basis for spectral method to solve sine-Gordon equation.

The approximate solution š‘¢š‘(š‘„,š‘”) to the exact solution š‘¢(š‘„,š‘”) can be written in the formš‘¢(š‘„,š‘”)ā‰…š‘ˆš‘(š‘„,š‘”)=š‘āˆ‘š‘›=0š‘Žš‘›(š‘”)š‘ƒš‘›0(š‘„),(3.1)

where š‘Žš‘› is the time-dependent quantities which must be determined. In this paper, we apply orthogonal polynomial š‘ƒš‘›š‘˜ for š‘˜=0. From (3.1), we getš‘ˆš‘š‘”š‘”=š‘ī“š‘›=0Ģˆš‘Žš‘›(š‘”)š‘ƒš‘›0š‘ˆ(š‘„),š‘š‘„š‘„=š‘ī“š‘›=0š‘Žš‘›Ģˆš‘ƒ(š‘”)š‘›0(š‘„).(3.2)

Using (3.2) and substituting in (1.1), we obtainš‘āˆ‘š‘›=0Ģˆš‘Žš‘›(š‘”)š‘ƒš‘›0ī€·š‘„š‘–ī€ø=š‘āˆ‘š‘›=0š‘Žš‘›Ģˆš‘ƒ(š‘”)š‘›0ī€·š‘„š‘–ī€øī€·š‘ˆāˆ’sinš‘ī€·š‘„š‘–,š‘”ī€øī€ø,š‘–=1,2,ā€¦,š‘āˆ’1,(3.3)

where Ģˆš‘Žš‘› and Ģˆš‘ƒš‘›0 denote the second-order derivatives of š‘Žš‘› and š‘ƒš‘›0 with respect to š‘” and š‘„, respectively, wherein the collocation points are as š‘„š‘–=š‘–/š‘,š‘–=0,1,ā€¦,š‘.

Equation (13) is rewritten as follows:š‘€Ģˆš“(š‘”)=š¾š“(š‘”)āˆ’š‘†1.(3.4)

For displaying this equation in matrix form, for š‘–=1,2,ā€¦,š‘āˆ’1, and š‘›=0,1,ā€¦,š‘, we define ī€ŗš‘Žš“(š‘”)=0(š‘”),š‘Ž1(š‘”),ā€¦,š‘Žš‘ī€»(š‘”)š‘‡,š‘€=š‘€in=š‘ƒš‘›0ī€·š‘„š‘–ī€ø,š¾=š¾in=Ģˆš‘ƒš‘›0ī€·š‘„š‘–ī€ø,š‘†1=ī€ŗī€·š‘ˆsin1ī€øī€·š‘ˆ,sin2ī€øī€·š‘ˆ,ā€¦,sinš‘āˆ’1ī€øī€»š‘‡,š‘ˆš‘–=š‘ˆš‘ī€·š‘„š‘–ī€ø.,š‘”(3.5)

The matrices š‘€ and š¾ are positive definite matrices of order (š‘āˆ’1)Ɨ(š‘āˆ’1). The system given in (3.4) consists of (š‘āˆ’1) equations in (š‘+1) unknowns. To obtain a unique solution for this system, we need two additional equations. For this, we add two boundary conditions, which are given by (1.3), in the following forms:š‘ˆš‘(0,š‘”)=š‘ī“š‘›=0š‘Žš‘›(š‘”)š‘ƒš‘›0(0)=š‘”0(š‘”),š‘”ā‰„š‘”0,š‘ˆš‘(1,š‘”)=š‘ī“š‘›=0š‘Žš‘›(š‘”)š‘ƒš‘›0(1)=š‘”1(š‘”),š‘”ā‰„š‘”0.(3.6)

From (3.6), we getš‘ī“š‘›=0Ģˆš‘Žš‘›(š‘”)š‘ƒš‘›0š‘‘(0)=2š‘”0(š‘”)š‘‘š‘”2,š‘”ā‰„š‘”0,š‘ī“š‘›=0Ģˆš‘Žš‘›(š‘”)š‘ƒš‘›0š‘‘(1)=2š‘”1(š‘”)š‘‘š‘”2,š‘”ā‰„š‘”0.(3.7)

Therefore, by using (3.6), and (3.7), a new system is obtained as follows:š‘€Ģˆš“(š‘”)=š¹(š‘”,š“(š‘”)),š¹(š‘”,š“(š‘”))=š¾š“(š‘”)āˆ’š‘†+šŗ(š‘”),(3.8)

where š“(š‘”), š¹(š‘”,š“(š‘”)), š‘†, and šŗ(š‘”) are vectors of order (š‘+1) with (š‘+1) components. The matrices š‘€ and š¾ are of order (š‘+1)Ɨ(š‘+1), which are defined as follows:āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽš‘š‘€=00(0)š‘10(0)ā‹Æš‘š‘0š‘(0)00ī€·š‘„1ī€øš‘10ī€·š‘„1ī€øā‹Æš‘š‘0ī€·š‘„1ī€øš‘ā‹®ā‹®ā‹±ā‹®00ī€·š‘„š‘āˆ’1ī€øš‘10ī€·š‘„š‘āˆ’1ī€øā‹Æš‘š‘0ī€·š‘„š‘āˆ’1ī€øš‘00(1)š‘10(1)ā‹Æš‘š‘0āŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ āŽ›āŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽœāŽ(1),(3.9)š¾=00ā‹Æ0Ģˆš‘00ī€·š‘„1ī€øĢˆš‘10ī€·š‘„1ī€øā‹ÆĢˆš‘š‘0ī€·š‘„1ī€øā‹®ā‹®ā‹±ā‹®Ģˆš‘00ī€·š‘„š‘āˆ’1ī€øĢˆš‘10ī€·š‘„š‘āˆ’1ī€øā‹ÆĢˆš‘š‘0ī€·š‘„š‘āˆ’1ī€øāŽžāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽŸāŽ 00ā‹Æ0.(3.10) Also, the vectors š‘† and šŗ(š‘”) are defined as follows:ī€ŗī€·š‘ˆš‘†=0,sin1ī€øī€·š‘ˆ,sin2ī€øī€·š‘ˆ,ā€¦,sinš‘āˆ’1ī€øī€»,0š‘‡,īƒ¬š‘‘šŗ(š‘”)=2š‘”0(š‘”)š‘‘š‘”2š‘‘,0,ā€¦,0,2š‘”1(š‘”)š‘‘š‘”2īƒ­š‘‡.(3.11) The nonlinear second-order system of ODEs (3.8) can be solved numerically using the fourth-order A-stable DIRKN method [3, 16]. From the initial conditions (1.2), we determine the initial vectors š“0 and Ģ‡š“0. Using (3.1), we getš‘ˆš‘ī€·š‘„š‘–ī€ø=,0š‘ī“š‘›=0š‘Žš‘›ī€·š‘”0ī€øš‘ƒš‘›0ī€·š‘„š‘–ī€ø,š‘–=0,1,ā€¦,š‘,šœ•š‘ˆš‘ī€·š‘„šœ•š‘”š‘–ī€ø=,0š‘ī“š‘›=0Ģ‡š‘Žš‘›ī€·š‘”0ī€øš‘ƒš‘›0ī€·š‘„š‘–ī€ø,š‘–=0,1,ā€¦,š‘.(3.12)

Equation (3.12) is system of (š‘+1) equations in (š‘+1) unknowns. These equations can be written in the matrix form š‘€š“0=š‘1 and š‘€Ģ‡š“0=š‘2, where š‘1=ī€ŗš‘“0ī€·š‘„0ī€ø,ā€¦,š‘“0ī€·š‘„š‘ī€øī€»š‘‡,š‘2=ī€ŗš‘“1ī€·š‘„0ī€ø,ā€¦,š‘“1ī€·š‘„š‘ī€øī€»š‘‡.(3.13)

3.1. The DIRKN Method

For solving (3.8), we use DIRKN method [3, 16]:š‘€š‘„š‘–=š‘€š“š‘›+š‘š‘–Ģ‡š“Ī”š‘”š‘€š‘›+Ī”š‘”2š‘ āˆ‘š‘—=1š‘Žš‘–š‘—š¹ī€·š‘”š‘›+š‘š‘—Ī”š‘”,š‘„š‘—ī€ø,š‘–=1,ā€¦,š‘ ,š‘€š“š‘›+1=š‘€š“š‘›+š‘š‘–Ģ‡š“Ī”š‘”š‘€š‘›+Ī”š‘”2š‘ ī“š‘—=1š‘š‘–š¹ī€·š‘”š‘›+š‘š‘—Ī”š‘”,š‘„š‘—ī€ø,š‘€Ģ‡š“š‘›+1Ģ‡š“=š‘€š‘›+Ī”š‘”š‘ ī“š‘—=1š‘š‘–š¹ī€·š‘”š‘›+š‘š‘—Ī”š‘”,š‘„š‘—ī€ø,(3.14)

where š‘„š‘– is the internal stages, š“š‘›+1 and Ģ‡š“š‘›+1 represent approximations to š“(š‘”š‘›+1) and Ģ‡š“(š‘”š‘›+1), respectively. Also we defineĪ”š‘”=š‘”0+š‘—Ī”š‘”,š‘—=0,1,ā€¦,š‘€,(3.15)where Ī”š‘”=(š‘‡āˆ’š‘”0)/š‘€. The RKN method can be denoted in šµš‘¢š‘”š‘ā„Žš‘’š‘Ÿ,š‘  notation by the table of coefficients:š‘1š‘Ž11ā‹Æš‘Ž1š‘ ā‹®š‘ā‹®ā‹±ā‹®š‘ š‘Žš‘ 1ā‹Æš‘Žš‘ š‘ š‘1ā‹Æš‘š‘ š‘1ā‹Æš‘š‘ (3.16)

In the DIRKN method, š‘Žš‘–š‘—=0 as (š‘–<š‘—) and š‘Žš‘–š‘– are equal. Also, in the above table of coefficients, š‘  is the number of stages. We use the four-stage A-stable DIRKN method [16], with algebraic fourth order, which is defined by the following table of coefficients for solving all experiments.

Using Table 1, we can calculate š‘„š‘–, š‘–=1,ā€¦,4, separately from (3.14) with Newton-Raphson iteration method. We iterate until the following criterion is satisfied:ā€–ā€–ī€·š‘„š‘–š‘˜+1āˆ’š‘„š‘˜š‘–ī€øā€–ā€–āˆž<10āˆ’12,(3.17) where š‘„š‘˜š‘– is the value of š‘„š‘– at the kth iteration of the Newton-Raphson method.


0.65820.24
0.93000.1864849679520.24
0.0700āˆ’3.1486640861952.9456280221830.24
0.34181.491936101409āˆ’1.8163048528350.1030070016890.24

0.1085722379060.0127646089720.1695869477700.209076205352

0.3176484432580.1823515567420.1823515567420.317648443258

4. Numerical Experiments

In this section, we present the results of numerical experiments using the method introduced in Section 3. The šæ2 and šæāˆž error norms are defined as follows:šæ2=ā€–ā€–š‘¢āˆ’š‘ˆš‘ā€–ā€–=īƒ¬š‘ī“š‘–=0ī€·š‘¢š‘–āˆ’š‘ˆš‘š‘–ī€ø2īƒ­1/2,šæāˆž=ā€–ā€–š‘¢āˆ’š‘ˆš‘ā€–ā€–=max0ā‰¤š‘–ā‰¤š‘||š‘¢š‘–āˆ’Uš‘š‘–||.(4.1)

We choose Ī”š‘”=1/1000, for solving all experiments.

The computations associated with the experiments discussed above were performed in Maple 13 on a PC with a CPU of 2.4ā€‰GHZ.

Experiment 1. In this experiment [3, 6, 10], we consider (1.1) with š‘”0=0 and the initial conditions š‘“0š‘“(š‘„)=0,1(š‘„)=4sech(š‘„),(4.2) with the boundary conditions (1.3), which can be obtained from the following exact solution: š‘¢(š‘„,š‘”)=4arctan(sech(š‘„)t).(4.3) In Table 2, the approximate solution for several final times (š‘‡) with different locations is shown. Figure 1 shows two type plots at š‘”=0.5 of Experiment 1.


š‘„ š‘‡ = 0 . 1 š‘‡ = 0 . 2 š‘‡ = 0 . 3 š‘‡ = 0 . 4 š‘‡ = 0 . 5

0.0 0.3986746100 0.7895822394 1.1658271779 1.5220255084 1.8545904360
0.2 0.3908822100 0.7744385442 1.1441349052 1.4948183070 1.8229915644
0.4 0.3689530692 0.7311732829 1.0827641117 1.4175301638 1.7328129513
0.6 0.3366233389 0.6685450323 0.9914459040 1.3016971244 1.5965446689
0.8 0.2985244887 0.5937600941 0.8826302804 1.1624500568 1.4310481369
1.0 0.2588597329 0.5155692281 0.7680835230 1.0145556439 1.2534069046

Experiment 2. In this experiment [3, 8], we consider (1.1) with š‘”0=0 and the initial conditions š‘“0š‘“(š‘„)=0,(4.4)14(š‘„)=āˆš1+š‘2īƒ©š‘„sechāˆš1+š‘2īƒŖ,(4.5) with the boundary conditions (1.3), which can be obtained from the following exact solution: īƒ©š‘š‘¢(š‘„,š‘”)=4arctanāˆ’1īƒ©sinš‘š‘”āˆš1+š‘2īƒŖīƒ©š‘„sechāˆš1+š‘2īƒŖīƒŖ,š‘=1.(4.6)
In Tables 3 and 4, we show the šæ2 and šæāˆž error norms, for several final times (š‘‡). As we see from Tables 3 and 4, for the given values of š‘, the šæāˆž error norm is less than the šæ2 error norm. Figure 2 shows four type plots at š‘”=0.5 of Experiment 2.


T š‘ = 4 š‘ = 8 š‘ = 1 6

0.1 5 . 0 2 Ɨ 1 0 āˆ’ 6 9 . 1 1 Ɨ 1 0 āˆ’ 9 9 . 5 6 Ɨ 1 0 āˆ’ 1 5
0.2 5 . 3 7 Ɨ 1 0 āˆ’ 5 1 . 0 0 Ɨ 1 0 āˆ’ 8 1 . 3 5 Ɨ 1 0 āˆ’ 1 3
0.3 2 . 0 5 Ɨ 1 0 āˆ’ 4 3 . 6 7 Ɨ 1 0 āˆ’ 7 2 . 2 2 Ɨ 1 0 āˆ’ 1 3
0.4 5 . 0 0 Ɨ 1 0 āˆ’ 4 8 . 3 7 Ɨ 1 0 āˆ’ 6 9 . 1 0 Ɨ 1 0 āˆ’ 1 3
0.5 9 . 4 6 Ɨ 1 0 āˆ’ 4 1 . 2 9 Ɨ 1 0 āˆ’ 6 3 . 4 3 Ɨ 1 0 āˆ’ 1 2
0.6 1 . 5 0 Ɨ 1 0 āˆ’ 3 1 . 5 2 Ɨ 1 0 āˆ’ 6 1 . 7 5 Ɨ 1 0 āˆ’ 1 1
0.7 2 . 1 0 Ɨ 1 0 āˆ’ 3 1 . 5 8 Ɨ 1 0 āˆ’ 6 1 . 2 9 Ɨ 1 0 āˆ’ 1 0
0.8 2 . 6 5 Ɨ 1 0 āˆ’ 3 1 . 6 5 Ɨ 1 0 āˆ’ 6 8 . 0 8 Ɨ 1 0 āˆ’ 1 0
0.9 3 . 0 8 Ɨ 1 0 āˆ’ 3 1 . 9 4 Ɨ 1 0 āˆ’ 6 4 . 9 4 Ɨ 1 0 āˆ’ 9
1.0 3 . 3 7 Ɨ 1 0 āˆ’ 3 2 . 1 3 Ɨ 1 0 āˆ’ 6 2 . 2 6 Ɨ 1 0 āˆ’ 8


š‘‡ š‘ = 4 š‘ = 8 š‘ = 1 6

0.1 1 . 3 0 Ɨ 1 0 āˆ’ 6 2 . 3 7 Ɨ 1 0 āˆ’ 9 2 . 6 8 Ɨ 1 0 āˆ’ 1 5
0.2 9 . 7 9 Ɨ 1 0 āˆ’ 6 1 . 8 3 Ɨ 1 0 āˆ’ 8 2 . 2 3 Ɨ 1 0 āˆ’ 1 4
0.3 2 . 9 8 Ɨ 1 0 āˆ’ 5 5 . 3 6 Ɨ 1 0 āˆ’ 8 2 . 9 7 Ɨ 1 0 āˆ’ 1 4
0.4 6 . 1 0 Ɨ 1 0 āˆ’ 5 9 . 1 4 Ɨ 1 0 āˆ’ 8 2 . 3 1 Ɨ 1 0 āˆ’ 1 3
0.5 9 . 8 2 Ɨ 1 0 āˆ’ 5 1 . 0 0 Ɨ 1 0 āˆ’ 7 7 . 9 4 Ɨ 1 0 āˆ’ 1 3
0.6 1 . 3 3 Ɨ 1 0 āˆ’ 4 1 . 0 0 Ɨ 1 0 āˆ’ 7 2 . 3 8 Ɨ 1 0 āˆ’ 1 2
0.7 1 . 5 7 Ɨ 1 0 āˆ’ 4 1 . 0 0 Ɨ 1 0 āˆ’ 7 1 . 2 9 Ɨ 1 0 āˆ’ 1 1
0.8 1 . 6 3 Ɨ 1 0 āˆ’ 4 1 . 0 0 Ɨ 1 0 āˆ’ 7 1 . 1 4 Ɨ 1 0 āˆ’ 1 0
0.9 1 . 6 3 Ɨ 1 0 āˆ’ 4 1 . 1 6 Ɨ 1 0 āˆ’ 7 8 . 0 3 Ɨ 1 0 āˆ’ 1 0
1.0 1 . 8 0 Ɨ 1 0 āˆ’ 4 1 . 1 6 Ɨ 1 0 āˆ’ 7 4 . 5 9 Ɨ 1 0 āˆ’ 9

Experiment 3. In experiment [3, 9], we consider (1.1) with š‘”0=0 and the initial conditions š‘“0īƒ©īƒ©š‘„(š‘„)=4arctanš‘sinhāˆš1āˆ’š‘2š‘“īƒŖīƒŖ,(4.7)1(š‘„)=0,(4.8) with the boundary conditions (1.3), which can be obtained from the following exact solution: āŽ›āŽœāŽœāŽī‚€āˆšš‘¢(š‘„,š‘”)=4arctanš‘sinhš‘„/1āˆ’š‘2ī‚ī‚€āˆšcoshš‘š‘”/1āˆ’š‘2ī‚āŽžāŽŸāŽŸāŽ ,š‘=0.5.(4.9)
In Table 5, we represent the šæ2 and šæāˆž error norms for different values of š‘ at š‘”=0.5. With increasing š‘, we obtain better results, and these error norms decrease five orders in magnitude. Figure 3 shows four-type plots at š‘”=0.5 of Experiment 3.


š‘ šæ 2 error norm šæ āˆž error norm

4 9 . 1 3 Ɨ 1 0 āˆ’ 3 7 . 3 6 Ɨ 1 0 āˆ’ 4
6 5 . 2 9 Ɨ 1 0 āˆ’ 4 3 . 7 7 Ɨ 1 0 āˆ’ 5
8 4 . 1 3 Ɨ 1 0 āˆ’ 5 2 . 9 4 Ɨ 1 0 āˆ’ 6
10 9 . 3 1 Ɨ 1 0 āˆ’ 7 7 . 3 0 Ɨ 1 0 āˆ’ 8
12 2 . 0 0 Ɨ 1 0 āˆ’ 7 3 . 8 2 Ɨ 1 0 āˆ’ 8
14 3 . 2 3 Ɨ 1 0 āˆ’ 8 7 . 2 1 Ɨ 1 0 āˆ’ 9
16 1 . 8 7 Ɨ 1 0 āˆ’ 8 3 . 9 4 Ɨ 1 0 āˆ’ 9

5. Conclusion

In this paper, we have presented the spectral method for solving one-dimensional nonlinear sine-Gordon equation using a new orthogonal polynomial. Numerical experiments show that the spectral method is an efficient one, and the results for value of š‘=16 is more accurate than the other values of š‘. The proposed method has higher order of accuracy even for small values of š‘ (i.e., š‘=4). We obtain better results when we choose small value of Ī”š‘”, in comparison to those obtained in the literature.

References

  1. A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004. View at: Zentralblatt MATH
  2. R. Rajaraman, Solitons and Instantons, North-Holland, Amsterdam, The Netherlands, 1982. View at: Zentralblatt MATH
  3. A. Mohebbi and M. Dehghan, ā€œHigh-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods,ā€ Mathematical and Computer Modelling, vol. 51, no. 5-6, pp. 537ā€“549, 2010. View at: Google Scholar | Zentralblatt MATH
  4. A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structure, vol. 8 of Oxford Texts in Applied and Engineering Mathematics, Oxford University Press, Oxford, UK, 2nd edition, 2003.
  5. T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, 2006.
  6. M. Dehghan and A. Shokri, ā€œA numerical method for one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions,ā€ Numerical Methods for Partial Differential Equations, vol. 24, no. 2, pp. 687ā€“698, 2008. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  7. M. Dehghan and D. Mirzaei, ā€œThe boundary integral equation approach for numerical solution of the one-dimensional sine-Gordon equation,ā€ Numerical Methods for Partial Differential Equations, vol. 24, no. 6, pp. 1405ā€“1415, 2008. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  8. A. G. Bratsos, ā€œA third order numerical scheme for the two-dimensional sine-Gordon equation,ā€ Mathematics and Computers in Simulation, vol. 76, no. 4, pp. 271ā€“282, 2007. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  9. A. G. Bratsos, ā€œA numerical method for the one-dimensional sine-Gordon equation,ā€ Numerical Methods for Partial Differential Equations, vol. 24, no. 3, pp. 833ā€“844, 2008. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  10. M. Dehghan and A. Shokri, ā€œA numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions,ā€ Mathematics and Computers in Simulation, vol. 79, no. 3, pp. 700ā€“715, 2008. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  11. M. Lakestani and M. Dehghan, ā€œCollocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation,ā€ Computer Physics Communications, vol. 181, no. 8, pp. 1392ā€“1401, 2010. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  12. M. Dehghan and F. Fakhar-Izadi, ā€œThe spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves,ā€ Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1865ā€“1877, 2011. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  13. A. H. A. Ali, ā€œChebyshev collocation spectral method for solving the RLW equation,ā€ International Journal of Nonlinear Science, vol. 7, no. 2, pp. 131ā€“142, 2009. View at: Google Scholar | Zentralblatt MATH
  14. V. S. Chelyshkov, ā€œAlternative orthogonal polynomials and quadratures,ā€ Electronic Transactions on Numerical Analysis, vol. 25, p. 17–26 (electronic), 2006. View at: Google Scholar | Zentralblatt MATH
  15. A. Imani, A. Aminataei, and A. Imani, ā€œCollocation method via Jacobi polynomials for solving nonlinear ordinary differential equations,ā€ International Journal of Mathematics and Mathematical Sciences, vol. 2011, Article ID 673085, 11 pages, 2011. View at: Google Scholar | Zentralblatt MATH
  16. J. M. Franco and I. Gómez, ā€œAccuracy and linear stability of RKN methods for solving second-order stiff problems,ā€ Applied Numerical Mathematics, vol. 59, no. 5, pp. 959ā€“975, 2009. View at: Publisher Site | Google Scholar | Zentralblatt MATH

Copyright © 2012 Zoleikha Soori and Azim Aminataei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

931Ā Views | 465Ā Downloads | 4Ā Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.