Abstract

We recall and study some properties of a known functional operating on the set of ๐‘›-copulas and determine conditions under such functional is well defined on the set of ๐‘›-quasi-copulas. As a consequence, new families of copulas and quasi-copulas are defined, illustrating our results with several examples.

1. Introduction

The term copula, coined by Sklar [1], is now common in the statistical literature (for a complete survey, see [2]). The importance of copulas as a tool for statistical analysis and modeling stems largely from the observation that the joint distribution function ๐ป of a random vector (๐‘‹1,๐‘‹2,โ€ฆ,๐‘‹๐‘›)โ€”where ๐‘› is a natural number such that ๐‘›โ‰ฅ2โ€”with respective univariate margins ๐น1,๐น2,โ€ฆ,๐น๐‘›, can be expressed in the form ๐ป(๐ฑ)=๐ถ(๐น1(๐‘ฅ1),๐น2(๐‘ฅ2),โ€ฆ,๐น๐‘›(๐‘ฅ๐‘›)), ๐ฑ=(๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘›)โˆˆ[โˆ’โˆž,โˆž]๐‘›, in terms of an ๐‘›-copula ๐ถ that is uniquely determined on ร—๐‘›๐‘–=1 Range ๐น๐‘–.

Copulas are becoming popular in development of quantitative risk management methodology within finance and insurance [3].

Alsina et al. [4] introduced the notion of (bivariate) quasi-copula in order to characterize operations on distribution functions that can, or cannot, be derived from operations on random variables defined on the same probability space (for the multivariate case, see [5]). Cuculescu and Theodorescu [6] have characterized an ๐‘›-dimensional quasi-copula (or ๐‘›-quasi-copula) as a function ๐‘„โˆถ[0,1]๐‘›โ†’[0,1] that satisfies the following:(Q1)๐‘„(๐‘ข1,โ€ฆ,๐‘ข๐‘–โˆ’1,0,๐‘ข๐‘–+1,โ€ฆ,๐‘ข๐‘›)=0 and ๐‘„(1,โ€ฆ,1,๐‘ข๐‘–,1,โ€ฆ,1)=๐‘ข๐‘– for all ๐ฎโˆˆ[0,1]๐‘› and for every ๐‘–=1,2,โ€ฆ,๐‘›;(Q2)๐‘„ is nondecreasing in each variable;(Q3)the 1-Lipschitz condition, that is, for each ๐ฎ,๐ฏโˆˆ[0,1]๐‘›, then โˆ‘|๐‘„(๐ฎ)โˆ’๐‘„(๐ฏ)|โ‰ค๐‘›๐‘–=1|๐‘ข๐‘–โˆ’๐‘ฃ๐‘–|.

While every ๐‘›-copula is an ๐‘›-quasi-copula, there exist ๐‘›-quasi-copulas ๐‘„ which are not ๐‘›-copulas; in this case it is said that ๐‘„ is a proper ๐‘›-quasi-copula. Every ๐‘›-quasi-copula ๐‘„ (and hence any ๐‘›-copula) satisfies the following inequalities: ๐‘Š๐‘›โˆ‘(๐ฎ)=max(๐‘›๐‘–=1๐‘ข๐‘–โˆ’๐‘›+1,0)โ‰ค๐‘„(๐ฎ)โ‰คmin(๐‘ข1,๐‘ข2,โ€ฆ,๐‘ข๐‘›)=๐‘€๐‘›(๐ฎ) for each ๐ฎ in [0,1]๐‘›. ๐‘€๐‘› is an ๐‘›-copula for every ๐‘›โ‰ฅ2; and ๐‘Š2 is a 2-copula, but ๐‘Š๐‘› is a proper ๐‘›-quasi-copula for every ๐‘›โ‰ฅ3.

In the last years an increasing interest has been devoted to these functions by researchers in some topics of fuzzy sets theory, such as preference modeling, similarities, and fuzzy logics (see [7] for an overview).

Let ๐‘“ be a function defined on [0,1]๐‘›, and let ๐ต denote the ๐‘›-box ๐ต=ร—๐‘›๐‘–=1[๐‘Ž๐‘–,๐‘๐‘–] in [0,1]๐‘› such that ๐‘Ž๐‘–โ‰ค๐‘๐‘– for all ๐‘–=1,2,โ€ฆ,๐‘›. The function ๐‘“ is said to be ๐‘›-increasing if โˆ‘sgn(๐œ)โ‹…๐‘“(๐œ)โ‰ฅ0, where the sum is taken over all the vertices ๐œ=(๐‘1,๐‘2,โ€ฆ,๐‘๐‘›) of ๐ตโ€”that is, each ๐‘๐‘˜ is equal to either ๐‘Ž๐‘˜ or ๐‘๐‘˜โ€”and sgn(๐œ) is 1 if ๐‘๐‘˜=๐‘Ž๐‘˜ for an even number of ๐‘˜๎…žs, and โˆ’1 if ๐‘๐‘˜=๐‘Ž๐‘˜ for an odd number of ๐‘˜๎…žs. Thus, an ๐‘›-copula is an ๐‘›-increasing function satisfying condition (Q1). Some differences between copulas and quasi-copulas can be found in [8โ€“12].

In this note, we provide new families of ๐‘›-copulas using a known functional operating defined in [13]. Moreover, we also determine conditions under such functional is an ๐‘›-quasi-copula. As a consequence, new families of copulas and quasi-copulas are defined.

2. The Functional

In the following, we will consider the set ๐ฝ defined in [0,1]๐‘› by ๐ฝ={๐ฎโˆˆ[0,1]๐‘›โˆฃ๐‘ข1๐‘ข2โ€ฆ๐‘ข๐‘›=๐‘ข๐‘–forsome๐‘–,1โ‰ค๐‘–โ‰ค๐‘›}.

Let ๐‘ƒ be a fixed ๐‘›-copula. Consider the functional defined for any ๐‘›-copula ๐ถ and any functions ๐‘“,๐›ผ1,๐›ผ2,โ€ฆ,๐›ผ๐‘› on [0,1]๐‘› into [0,1] as follows:๐ถโˆ—๎€บ๐‘“๎€ท๐›ผ(๐ฎ)=๐œ†โ‹…๐‘ƒ(๐ฎ)+(1โˆ’๐œ†)โ‹…(๐ฎ)+๐ถ1(๐ฎ),๐›ผ2(๐ฎ),โ€ฆ,๐›ผ๐‘›(๐ฎ)๎€ธ๎€ป(2.1) for every ๐ฎ in [0,1]๐‘› with ๐œ†โˆˆ[0,1]. Conditions under this function is an ๐‘›-copula for any ๐‘›-copula ๐ถ are given in the following result.

Theorem 2.1 ([13, Theorem 3.4]). Let ๐ถโˆ— be the function defined as (2.1). If
(i)the function ๐‘“ is ๐‘›-increasing; (ii)๐‘“(๐ฎ)=๐‘ข1๐‘ข2โ€ฆ๐‘ข๐‘›โˆ’โˆ๐‘›๐‘–=1๐›ผ๐‘–(๐ฎ) for every ๐ฎโˆˆ๐ฝ;(iii)for every ๐ฎโˆˆ๐ฝ, there is some ๐‘—, 1โ‰ค๐‘—โ‰ค๐‘›, such that โˆ๐‘›๐‘–=1๐›ผ๐‘–(๐ฎ)=๐›ผ๐‘—(๐ฎ), and either one of the two following conditions holds;(iv)every function ๐›ผ๐‘– depends solely on one variable, which is different for each ๐›ผ๐‘–; all ๐›ผ๐‘–โ€™s are monotone but the number of them that are decreasing is even;(v)there exists one variable ๐‘ข๐‘—(1โ‰ค๐‘—โ‰ค๐‘›) such that none of the functions ๐›ผ๐‘– depends on ๐‘ข๐‘—.
Then ๐ถโˆ— is an ๐‘›-copula for every ๐‘›-copula ๐ถ.

2.1. Examples

In [13], there are no examples of ๐‘›-copulas of type (2.1) satisfying the conditions in Theorem 2.1. In what follows, we provide examples of such ๐‘›-copulas, but first we need the following result, which shows that the convex linear combination of two ๐‘›-copulas is an ๐‘›-copula, and whose proof is immediate.

Proposition 2.2. Let ๐ถ1 and ๐ถ2 be two ๐‘›-copulas. Then, the function ๐ถ(๐ฎ)=๐œƒโ‹…๐ถ1(๐ฎ)+(1โˆ’๐œƒ)โ‹…๐ถ2(๐ฎ) for all ๐ฎ in [0,1]๐‘› with ๐œƒโˆˆ[0,1], is an ๐‘›-copula.

Thus, taking ๐‘ƒ as any fixed ๐‘›-copula, ๐‘“ the zero functionโ€”that is, ๐‘“(๐ฎ)=0 for all ๐ฎโˆˆ[0,1]๐‘›โ€”, and ๐›ผ๐‘–(๐ฎ)=๐‘ข๐‘–, for all ๐ฎ in [0,1]๐‘› and for every ๐‘–=1,2,โ€ฆ,๐‘›, in (2.1), then conditions (i)โ€“(iv) in Theorem 2.1 are immediately satisfied, and hence we obtain the result in Proposition 2.2. In what follows we will find examples in which the function ๐‘“ is not identically equal to zero.

We now provide two examples.

Example 2.3. Let ๐‘ƒ be a fixed ๐‘›-copula, ๐›ผ๐‘–(๐ฎ)=๐‘ข๐‘–(1โˆ’๐‘ข๐‘–), ๐‘–=1,2,โ€ฆ,๐‘›โˆ’1, and ๐›ผ๐‘›(๐ฎ)=1 for all ๐ฎ in [0,1]๐‘›. If ๐‘“ is the function defined by ๐‘“(๐ฎ)=๐‘ข21๐‘ข2โ€ฆ๐‘ข๐‘›, then for any ๐‘›-box ๐ต=ร—๐‘›๐‘–=1[๐‘ข๐‘–,๐‘ฃ๐‘–], we have that ๐‘“ is ๐‘›-increasing, since (๐‘ฃ2+๐‘ข2)โˆ๐‘›๐‘–=1(๐‘ฃ๐‘–โˆ’๐‘ข๐‘–)โ‰ฅ0. It is easy to check that conditions (i), (ii), (iii), and (v)โ€”but not (iv)โ€”in Theorem 2.1 are satisfied. Thus, we have that the functions given by ๐ถโˆ—๎€บ๐‘ข(๐ฎ)=๐œ†โ‹…๐‘ƒ(๐ฎ)+(1โˆ’๐œ†)โ‹…21๐‘ข2โ€ฆ๐‘ข๐‘›๎€ท๐‘ข+๐ถ1๎€ท1โˆ’๐‘ข1๎€ธ,โ€ฆ,๐‘ข๐‘›โˆ’1๎€ท1โˆ’๐‘ข๐‘›โˆ’1๎€ธ[],1๎€ธ๎€ป,๐ฎโˆˆ0,1๐‘›,(2.2) represent a family of ๐‘›-copulas for any ๐‘›-copula ๐ถ.

Example 2.4. Let ๐‘› be a natural number such that ๐‘›โ‰ฅ3. Let ๐›ผ๐‘–(๐ฎ)=1โˆ’๐‘ข๐‘– for ๐‘–=1,2,3, and ๐›ผ๐‘–(๐ฎ)=๐‘ข๐‘–, ๐‘–โ‰ฅ4, for every ๐ฎ in [0,1]๐‘›. If ๐‘“ is any ๐‘›-copula, we have that conditions (i), (ii), (iii), and (iv)โ€”but not (v)โ€”in Theorem 2.1 are satisfied. Thus, the functions given by ๐ถโˆ—๎€บ๐‘“๎€ท(๐ฎ)=๐œ†โ‹…๐‘ƒ(๐ฎ)+(1โˆ’๐œ†)โ‹…(๐ฎ)+๐ถ1โˆ’๐‘ข1,1โˆ’๐‘ข2,1โˆ’๐‘ข3,๐‘ข4,โ€ฆ,๐‘ข๐‘›[]๎€ธ๎€ป,๐ฎโˆˆ0,1๐‘›,(2.3) represent a family of ๐‘›-copulas for any ๐‘›-copula ๐ถ.
In [13], it is noted that conditions (iv) or (v) in Theorem 2.1 could be too strong, and the authors provide a counterexample in which none of the conditions is satisfied and the function ๐ถโˆ— given by (2.1) is not a copula. However, we stress that these two conditions are sufficient (but not necessary), as the following example shows.

Example 2.5. Let ๐‘ƒ be a fixed ๐‘›-copula, and let โˆ๐‘“(๐ฎ)=๐‘›๐‘–=1๐‘ข๐‘–, ๐›ผ1โˆ(๐ฎ)=๐›ฟ๐‘›๐‘–=1๐‘ข๐‘–(1โˆ’๐‘ข๐‘–) with ๐›ฟโˆˆ[โˆ’1,1], and ๐›ผ๐‘–(๐ฎ)=1, ๐‘–=2,โ€ฆ,๐‘›, for all ๐ฎ in [0,1]๐‘›. Then, it is easy to check that these functions satisfy conditions (i), (ii), and (iii) in Theorem 2.1, but neither (iv) nor (v) hold. However, for any ๐‘›-copula ๐ถ, the function given by (2.1), that is,๐ถโˆ—๎ƒฌ(๐ฎ)=๐œ†โ‹…๐‘ƒ(๐ฎ)+(1โˆ’๐œ†)โ‹…๐‘›๎‘๐‘–=1๐‘ข๐‘–๎ƒฉ๐›ฟ+๐ถ๐‘›๎‘๐‘–=1๐‘ข๐‘–๎€ท1โˆ’๐‘ข๐‘–๎€ธ๎ƒฌ,1,โ€ฆ,1๎ƒช๎ƒญ=๐œ†โ‹…๐‘ƒ(๐ฎ)+(1โˆ’๐œ†)โ‹…๐‘›๎‘๐‘–=1๐‘ข๐‘–โ‹…๎ƒฉ1+๐›ฟ๐‘›๎‘๐‘–=1๎€ท1โˆ’๐‘ข๐‘–๎€ธ๎ƒช๎ƒญ(2.4)
for every ๐ฎ in [0,1]๐‘›, is an ๐‘›-copula, since the function โˆ๐ท(๐ฎ)=๐‘›๐‘–=1๐‘ข๐‘–โˆโ‹…[1+๐›ฟ๐‘›๐‘–=1(1โˆ’๐‘ข๐‘–)] is a member of the known Farlie-Gumbel-Morgenstern family of ๐‘›-copulas [14, equation (44.73)], and we only need to apply Proposition 2.2. For ๐‘ƒ, we can choose any family of ๐‘›-copulas different from ๐ท (see [2, 15โ€“17] e.g).

2.2. Association and Dependence

For statistical modelling [18], with each ๐‘›-copula ๐ถ we can associate, among others, a non-parametric measure of multivariate association, called the medial correlation coefficient (or Blomqvistโ€™s beta), which can be easily computed as ๐›ฝ๐‘›2(๐ถ)=๐‘›โˆ’1๎‚ƒ๐ถ(๐Ÿ/๐Ÿ)+๎‚„๐ถ(๐Ÿ/๐Ÿ)โˆ’12๐‘›โˆ’1โˆ’1(2.5) (see [19, 20]), where ๐ถ denotes the survival function of ๐ถ [2].

A coefficient that summarize some statistical properties of a copula is introduced in [21]. Let ๐— be a random vector with joint distribution function ๐ป and univariate margins ๐น1,โ€ฆ,๐น๐‘›. Let ๐นminโˆถ=min(๐น1(๐‘‹1),โ€ฆ,๐น๐‘›(๐‘‹๐‘›)) and ๐นmaxโˆถ=max(๐น1(๐‘‹1),โ€ฆ,๐น๐‘›(๐‘‹๐‘›)). The lower extremal dependence coefficient of ๐— is defined as ๐œ€๐ฟโˆถ=lim๐‘กโ†’0+๐‘ƒ[๐นmaxโ‰ค๐‘กโˆฃ๐นminโ‰ค๐‘ก], and the upper extremal dependence coefficient of ๐— is defined as ๐œ€๐‘ˆโˆถ=lim๐‘กโ†’1โˆ’๐‘ƒ[๐นmin>๐‘กโˆฃ๐นmax>๐‘ก] (if the limits exist). We obtain that, for every ๐ญ=(๐‘ก,โ€ฆ,๐‘ก)โˆˆ[0,1]๐‘›, in terms of the associated copula ๐ถ, these coefficients are given by ๐œ€๐ฟ=lim๐‘กโ†’0+๐ถ(๐ญ)1โˆ’๐œ€๐ถ(๐ญ)๐‘ˆ=lim๐‘กโ†’1โˆ’๐ถ(๐ญ)1โˆ’๐ถ(๐ญ),(2.6) respectively.

Since the general computation of these coefficients for the ๐‘›-copulas given by (2.1) do not give us much information, let us take the family of ๐‘›-copulas given by (2.4) with ๐‘ƒ=๐‘€๐‘›. Then, it is a simple exercise to show that ๐›ฝ๐‘›๎€ท๐ถโˆ—๎€ธ=๎ƒฏ๐œ†+๐›ฟ(1โˆ’๐œ†)22๐‘›โˆ’1,if๐‘›iseven๐œ†,if๐‘›isodd,(2.7) and ๐œ€๐ฟ=๐œ€๐‘ˆ=๐œ†.๐œ†+(1โˆ’๐œ†)๐‘›(2.8)

2.3. Quasi-Copulas

Assume ๐‘ƒ is a fixed ๐‘›-quasi-copula and consider the functional defined for any ๐‘›-quasi-copula ๐‘„ and any functions ๐‘“,๐›ผ1,๐›ผ2,โ€ฆ,๐›ผ๐‘› on [0,1]๐‘› into [0,1] as follows:๐‘„โˆ—๎€บ๐‘“๎€ท๐›ผ(๐ฎ)=๐œ†โ‹…๐‘ƒ(๐ฎ)+(1โˆ’๐œ†)โ‹…(๐ฎ)+๐‘„1(๐ฎ),๐›ผ2(๐ฎ),โ€ฆ,๐›ผ๐‘›(๐ฎ)๎€ธ๎€ป(2.9) for every ๐ฎ in [0,1]๐‘› with ๐œ†โˆˆ[0,1]. We want to study conditions for the functions ๐‘“,๐›ผ1,๐›ผ2,โ€ฆ,๐›ผ๐‘› which assure that ๐‘„โˆ— is an ๐‘›-quasi-copula for any ๐‘›-quasi-copula ๐‘„โ€”of course, Theorem 2.1 is valid for this case too. We have the following result.

Theorem 2.6. Let ๐‘„โˆ— be the function defined by (2.9) for which properties (ii) and (iii) in Theorem 2.1 are satisfied. Moreover, suppose
(vi)the functions ๐‘“ and ๐›ผ๐‘–, ๐‘–=1,2,โ€ฆ,๐‘›, are increasing in each variable;(vii)๐‘“ satisfies the ๐‘Ÿ-Lipschitz condition with ๐‘Ÿโˆˆ[0,1] and ๐›ผ๐‘– satisfies the (1โˆ’๐‘Ÿ)/๐‘›-Lipschitz condition for all ๐‘–=1,2,โ€ฆ,๐‘›.
Then ๐‘„โˆ— is an ๐‘›-quasi-copula for every ๐‘›-quasi-copula ๐‘„.

Proof. Condition (Q1) in the definition of ๐‘›-quasi-copula is equivalent to the conditions (ii) and (iii) in Theorem 2.1 [13]. We prove now that conditions (Q2) and (Q3) are satisfied. For that, let ๐ฎ๎…ž=(๐‘ข1,โ€ฆ,๐‘ข๐‘–โˆ’1,๐‘ข๐‘–๎…ž,๐‘ข๐‘–+1,โ€ฆ,๐‘ข๐‘›) and ๐ฎ=(๐‘ข1,โ€ฆ,๐‘ข๐‘–,โ€ฆ,๐‘ข๐‘›) be in [0,1]๐‘› such that ๐‘ข๐‘–โ‰ค๐‘ข๐‘–๎…ž. Since ๐‘„โˆ—(๐ฎโ€ฒ)โˆ’๐‘„โˆ—๎€ท๐ฎ(๐ฎ)=๐œ†โ‹…๐‘ƒ๎…ž๎€ธ+๎€บ๐‘“๎€ท๐ฎ(1โˆ’๐œ†)โ‹…๎…ž๎€ธ๎€ท๐›ผ+๐‘„1๎€ท๐ฎ๎…ž๎€ธ,โ€ฆ,๐›ผ๐‘›๎€ท๐ฎ๎…ž๎€บ๎€ท๐›ผ๎€ธ๎€ธ๎€ปโˆ’๐œ†โ‹…๐‘ƒ(๐ฎ)โˆ’(1โˆ’๐œ†)โ‹…๐‘“(๐ฎ)+๐‘„1(๐ฎ),โ€ฆ,๐›ผ๐‘›(๎€บ๐‘ƒ๎€ท๐ฎ๐ฎ)๎€ธ๎€ป=๐œ†โ‹…๎…ž๎€ธ๎€ป+โ‹…๎€บ๐‘“๎€ท๐ฎโˆ’๐‘ƒ(๐ฎ)(1โˆ’๐œ†)๎…ž๎€ธ๎€ท๐›ผโˆ’๐‘“(๐ฎ)+๐‘„1๎€ท๐ฎ๎…ž๎€ธ,โ€ฆ,๐›ผ๐‘›๎€ท๐ฎ๎…ž๎€ท๐›ผ๎€ธ๎€ธโˆ’๐‘„1(๐ฎ),โ€ฆ,๐›ผ๐‘›(,๐ฎ)๎€ธ๎€ป(2.10)and ๐‘ƒ and ๐‘„ are ๐‘›-quasi-copulasโ€”that is, ๐‘ƒ and ๐‘„ satisfy conditions (Q2) and (Q3); using condition (vi), we obtain immediately that ๐‘„โˆ—(๐ฎ๎…ž)โˆ’๐‘„โˆ—(๐ฎ)โ‰ฅ0, that is, ๐‘„โˆ— satisfies (Q2); and using condition (vii) we have that ๐‘„โˆ—(๐ฎโ€ฒ)โˆ’๐‘„โˆ—[]๎ƒฉ(๐ฎ)โ‰ค๐œ†โ‹…๐‘ƒ(๐ฎโ€ฒ)โˆ’๐‘ƒ(๐ฎ)+(1โˆ’๐œ†)โ‹…๐‘“(๐ฎโ€ฒ)โˆ’๐‘“(๐ฎ)+๐‘›๎“๐‘–=1๎€บ๐›ผ๐‘–(๐ฎโ€ฒ)โˆ’๐›ผ๐‘–๎€ป๎ƒช๎€ท๐‘ข(๐ฎ)โ‰ค๐œ†โ‹…๐‘–๎…žโˆ’๐‘ข๐‘–๎€ธ๎‚ƒ๐‘Ÿ๎€ท๐‘ข+(1โˆ’๐œ†)โ‹…๐‘–๎…žโˆ’๐‘ข๐‘–๎€ธ+๐‘›โ‹…1โˆ’๐‘Ÿ๐‘›โ‹…๎€ท๐‘ข๐‘–๎…žโˆ’๐‘ข๐‘–๎€ธ๎‚„=๎€ท๐‘ข๐‘–๎…žโˆ’๐‘ข๐‘–๎€ธ.(2.11) Thus, for every ๐ฎ,๐ฏ in [0,1]๐‘›, we have that ||๐‘„โˆ—(๐ฏ)โˆ’๐‘„โˆ—||=||๐‘„(๐ฎ)โˆ—๎€ท๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›๎€ธโˆ’๐‘„โˆ—๎€ท๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›โˆ’1,๐‘ข๐‘›๎€ธ||+||๐‘„โˆ—๎€ท๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›โˆ’1,๐‘ข๐‘›๎€ธโˆ’๐‘„โˆ—๎€ท๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘›โˆ’2,๐‘ฃ๐‘›โˆ’1,๐‘ข๐‘›๎€ธ||||๐‘„+โ‹ฏ+โˆ—๎€ท๐‘ฃ1,๐‘ข2,โ€ฆ,๐‘ข๐‘›๎€ธโˆ’๐‘„โˆ—๎€ท๐‘ข1,โ€ฆ,๐‘ข๐‘›๎€ธ||โ‰ค๐‘›๎“๐‘–=1||๐‘ฃ๐‘–โˆ’๐‘ข๐‘–||,(2.12) that is, ๐‘„โˆ— satisfies (Q3), which completes the proof.

As an application of Theorem 2.6, we can generalize the result in Proposition 2.2 in the following sense: take ๐‘ƒ as any fixed ๐‘›-quasi-copula, ๐‘“ an ๐‘›-quasi-copula, and ๐›ผ๐‘– the zero function for every ๐‘–=1,2,โ€ฆ,๐‘›. Thus, we have a similar result to Proposition 2.2 applied to ๐‘›-quasi-copulas.

Proposition 2.7. Let ๐‘„1 and ๐‘„2 be two ๐‘›-quasi-copulas. Then, the function ๐‘„(๐ฎ)=๐œƒโ‹…๐‘„1(๐ฎ)+(1โˆ’๐œƒ)โ‹…๐‘„2(๐ฎ) for all ๐ฎ in [0,1]๐‘› with ๐œƒโˆˆ[0,1], is an ๐‘›-quasi-copula.

Conditions (vi) and (vii) in Theorem 2.6 may be not necessary. For instance, if ๐‘“ is the zero function, ๐›ผ๐‘–(๐ฎ)=๐‘ข๐‘— for every ๐‘–,๐‘—=1,2,โ€ฆ,๐‘›, then condition (vii) in Theorem 2.6 is not satisfied; however, in this case, we obtain a family of (maybe, proper) ๐‘›-quasi-copulas of type (2.9). Another example with ๐‘“ not identically zero is the following.

Example 2.8. Let ๐‘“ be the product ๐‘›-copula, ๐›ผ1(๐ฎ)=๐›พ(1โˆ’๐‘ข๐‘›)(1โˆ’max1โ‰ค๐‘–โ‰ค๐‘›โˆ’1๐‘ข๐‘–)โˆ๐‘›๐‘–=1๐‘ข๐‘– and ๐›ผ๐‘–(๐ฎ)=1, ๐‘–=2,โ€ฆ,๐‘›, for every ๐ฎโˆˆ[0,1]๐‘› with ๐›พโˆˆ[0,1]. Then, conditions (ii) and (iii) in Theorem 2.1 hold, but condition (vi) in Theorem 2.6 is not satisfied. However, via Proposition 2.7, we have that ๐‘„โˆ—(๐ฎ)=๐œ†๐‘ƒ(๐ฎ)+(1โˆ’๐œ†)โ‹…๐‘›๎‘๐‘–=1๐‘ข๐‘–๎‚ธ๎€ท1+๐›พ1โˆ’๐‘ข๐‘›๎€ธ๎‚ต1โˆ’max1โ‰ค๐‘–โ‰ค๐‘›โˆ’1๐‘ข๐‘–๎‚ถ๎‚น(2.13) is an ๐‘›-quasi-copula, since โˆ๐‘›๐‘–=1๐‘ข๐‘–[1+๐›พ(1โˆ’๐‘ข๐‘›)(1โˆ’max1โ‰ค๐‘–โ‰ค๐‘›โˆ’1๐‘ข๐‘–)] is a proper ๐‘›-quasi-copula for ๐›พโˆˆ(0,1] (note that the case ๐›พ=0 corresponds to the product ๐‘›-copula). If, for instance, we take ๐‘ƒ=๐‘Š๐‘› in (2.13), we obtain a family of proper ๐‘›-quasi-copulas.

3. Conclusion

In this note, we have recalled a known functional operating on the set of ๐‘›-copulas, provided examples of ๐‘›-copulas satisfying the conditions in Theorem 2.1, and studied some properties of association and dependence. Finally, we have determined conditions under such functional are well defined on the set of ๐‘›-quasi-copulas.

Acknowledgments

The author is grateful for the support by the Ministerio de Ciencia e Innovaciรณn (Spain) and FEDER, under Research Project MTM2009-08724.