Table of Contents
ISRN Oncology
Volume 2012, Article ID 473146, 9 pages
http://dx.doi.org/10.5402/2012/473146
Review Article

Microsatellite Instability in Sarcoma: Fact or Fiction?

1Sarcoma Services, Department of Orthopaedics, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
2Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
3Division of Pediatric Hematology/Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
4Center for Children's Cancer Research (C3R), Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA

Received 1 March 2012; Accepted 2 May 2012

Academic Editors: L. Mutti and R. V. Sionov

Copyright © 2012 Michael J. Monument et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Ellegren, “Microsatellites: simple sequences with complex evolution,” Nature Reviews Genetics, vol. 5, no. 6, pp. 435–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. M. Hearne, S. Ghosh, and J. A. Todd, “Microsatellites for linkage analysis of genetic traits,” Trends in Genetics, vol. 8, no. 8, pp. 288–294, 1992. View at Google Scholar · View at Scopus
  4. P. Hackman, G. Gabbani, A. M. Osterholm, D. Hellgren, and B. Lambert, “Spontaneous length variation in microsatellite DNA from human T-cell clones,” Genes Chromosomes and Cancer, vol. 14, no. 3, pp. 215–219, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Levinson and G. A. Gutman, “High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12,” Nucleic Acids Research, vol. 15, no. 13, pp. 5323–5338, 1987. View at Publisher · View at Google Scholar · View at Scopus
  6. K. A. Eckert and S. E. Hile, “Every microsatellite is different: intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome,” Molecular Carcinogenesis, vol. 48, no. 4, pp. 379–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Schofield and P. Hsieh, “DNA Mismatch repair: molecular mechanisms and biological function,” Annual Review of Microbiology, vol. 57, pp. 579–608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. N. Thibodeau, G. Bren, and D. Schaid, “Microsatellite instability in cancer of the proximal colon,” Science, vol. 260, no. 5109, pp. 816–819, 1993. View at Google Scholar · View at Scopus
  9. Y. Ionov, M. A. Peinado, S. Malkhosyan, D. Shibata, and M. Perucho, “Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis,” Nature, vol. 363, no. 6429, pp. 558–561, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Aaltonen, P. Peltomaki, F. S. Leach et al., “Clues to the pathogenesis of familial colorectal cancer,” Science, vol. 260, no. 5109, pp. 812–816, 1993. View at Google Scholar · View at Scopus
  11. P. Peltomaki, R. A. Lothe, L. A. Aaltonen et al., “Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome,” Cancer Research, vol. 53, no. 24, pp. 5853–5855, 1993. View at Google Scholar · View at Scopus
  12. F. M. Giardiello, J. D. Brensinger, and G. M. Petersen, “AGA technical review on hereditary colorectal cancer and genetic testing,” Gastroenterology, vol. 121, no. 1, pp. 198–213, 2001. View at Google Scholar · View at Scopus
  13. S. Chen, W. Wang, S. Lee et al., “Prediction of germline mutations and cancer risk in the lynch syndrome,” Journal of the American Medical Association, vol. 296, no. 12, pp. 1479–1487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Stoffel, B. Mukherjee, V. M. Raymond et al., “Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome,” Gastroenterology, vol. 137, no. 5, pp. 1621–1627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Piñol, A. Castells, M. Andreu et al., “Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer,” Journal of the American Medical Association, vol. 293, no. 16, pp. 1986–1994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. G. Herman, A. Umar, K. Polyak et al., “Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6870–6875, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Popat, R. Hubner, and R. S. Houlston, “Systematic review of microsatellite instability and colorectal cancer prognosis,” Journal of Clinical Oncology, vol. 23, no. 3, pp. 609–618, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. R. Boland, S. N. Thibodeau, S. R. Hamilton et al., “A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer,” Cancer Research, vol. 58, no. 22, pp. 5248–5257, 1998. View at Google Scholar · View at Scopus
  19. A. Umar, C. R. Boland, J. P. Terdiman et al., “Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability,” Journal of the National Cancer Institute, vol. 96, no. 4, pp. 261–268, 2004. View at Google Scholar · View at Scopus
  20. C. R. Boland and A. Goel, “Microsatellite instability in colorectal cancer,” Gastroenterology, vol. 138, no. 6, pp. 2073–2087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Des Guetz, O. Schischmanoff, P. Nicolas, G. Y. Perret, J. F. Morere, and B. Uzzan, “Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis,” European Journal of Cancer, vol. 45, no. 10, pp. 1890–1896, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Guastadisegni, M. Colafranceschi, L. Ottini, and E. Dogliotti, “Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data,” European Journal of Cancer, vol. 46, no. 15, pp. 2788–2798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Woerner, M. Kloor, M. von Knebel Doeberitz, and J. F. Gebert, “Microsatellite instability in the development of DNA mismatch repair deficient tumors,” Cancer Biomarkers. Section A, vol. 2, no. 1-2, pp. 69–86, 2006. View at Google Scholar · View at Scopus
  24. Y. Ejima, L. Yang, and M. S. Sasaki, “Aberrant splicing of the ATM gene associated with shortening of the intronic mononucleotide tract in human colon tumor cell lines: a novel mutation target of microsatellite instability,” International Journal of Cancer, vol. 86, no. 2, pp. 262–268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Zhu and N. Kyprianou, “Transforming growth factor beta and prostate cancer,” Cancer treatment and research, vol. 126, pp. 157–173, 2005. View at Google Scholar · View at Scopus
  26. K. B. Hahm, K. Cho, C. Lee et al., “Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS-FLI1 oncoprotein,” Nature Genetics, vol. 23, no. 2, pp. 222–227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Mateo-Lozano, O. M. Tirado, and V. Notario, “Rapamycin induces the fusion-type independent downregulation of the EWS/FLI-1 proteins and inhibits Ewing's sarcoma cell proliferation,” Oncogene, vol. 22, no. 58, pp. 9282–9287, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Miyashita and J. C. Reed, “Tumor suppressor p53 is a direct transcriptional activator of the human bax gene,” Cell, vol. 80, no. 2, pp. 293–299, 1995. View at Google Scholar · View at Scopus
  29. T. Tsuchiya, K. I. Sekine, S. I. Hinohara, T. Namiki, T. Nobori, and Y. Kaneko, “Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma,” Cancer Genetics and Cytogenetics, vol. 120, no. 2, pp. 91–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. S. L. Lessnick, C. S. Dacwag, and T. R. Golub, “The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts,” Cancer Cell, vol. 1, no. 4, pp. 393–401, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Gonin-Laurent, N. S. Hadj-Hamou, N. Vogt et al., “RB1 and TP53 pathways in radiation-induced sarcomas,” Oncogene, vol. 26, no. 41, pp. 6106–6112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Duval and R. Hamelin, “Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability,” Cancer Research, vol. 62, no. 9, pp. 2447–2454, 2002. View at Google Scholar · View at Scopus
  33. E. L. McKinsey, J. K. Parrish, A. E. Irwin et al., “A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs,” Oncogene, vol. 30, pp. 4910–4920, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Pacheco and T. O. Nielsen, “Histone deacetylase 1 and 2 in mesenchymal tumors,” Modern Pathology, vol. 25, no. 2, pp. 222–230, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. W. K. Rasheed, R. W. Johnstone, and H. M. Prince, “Histone deacetylase inhibitors in cancer therapy,” Expert Opinion on Investigational Drugs, vol. 16, no. 5, pp. 659–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Gangwal, S. Sankar, P. C. Hollenhorst et al., “Microsatellites as EWS/FLI response elements in Ewing's sarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 10149–10154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. A. Belchis, C. A. Meece, F. A. Benko, P. K. Rogan, R. A. Williams, and C. D. Gocke, “Loss of heterozygosity and microsatellite instability at the retinoblastoma locus in osteosarcomas,” Diagnostic Molecular Pathology, vol. 5, no. 3, pp. 214–219, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. S. S. Martin, W. G. Hurt, L. K. Hedges, M. G. Butler, and H. S. Schwartz, “Microsatellite instability in sarcomas,” Annals of Surgical Oncology, vol. 5, no. 4, pp. 356–360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Klingler, J. Shooks, P. N. Fiedler, A. Marney, M. G. Butler, and H. S. Schwartz, “Microsatellite instability in sacral chordoma,” Journal of Surgical Oncology, vol. 73, no. 2, pp. 100–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Ohali, S. Avigad, I. J. Cohen et al., “High frequency of genomic instability in Ewing family of tumors,” Cancer Genetics and Cytogenetics, vol. 150, no. 1, pp. 50–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Rucińska, L. Kozłowski, W. Pepiński, M. Skawrońska, J. Janica, and M. Z. Wejtokiewicz, “High grade sarcomas are associated with microsatellite instability (chromosom 12) and loss of heterozygosity (chromosom 2),” Medical Science Monitor, vol. 11, no. 2, pp. BR65–BR68, 2005. View at Google Scholar · View at Scopus
  42. R. Wooster, A. M. Cleton-Jansen, N. Collins et al., “Instability of short tandem repeats (microsatellites) in human cancers,” Nature Genetics, vol. 6, no. 2, pp. 152–156, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Tarkkanen, L. A. Aaltonen, T. Böhling et al., “No evidence of microsatellite instability in bone tumours,” British Journal of Cancer, vol. 74, no. 3, pp. 453–455, 1996. View at Google Scholar · View at Scopus
  44. G. Aue, L. K. Hedges, H. S. Schwartz, J. A. Bridge, J. R. Neff, and M. G. Butler, “Clear cell sarcoma or malignant melanoma of soft parts: molecular analysis of microsatellite instability with clinical correlation,” Cancer Genetics and Cytogenetics, vol. 105, no. 1, pp. 24–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Entz-Werle, A. Schneider, C. Kalifa et al., “Genetic alterations in primary osteosarcoma from 54 children and adolescents by targeted allelotyping,” British Journal of Cancer, vol. 88, no. 12, pp. 1925–1931, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Ebinger, T. Bock, R. Kandolf, K. Sotlar, B. D. Bültmann, and J. Greil, “Standard mono- and dinucleotide repeats do not appear to be sensitive markers of microsatellite instability in the Ewing family of tumors,” Cancer Genetics and Cytogenetics, vol. 157, no. 2, pp. 189–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Entz-Werlé, L. Marcellin, M. P. Gaub et al., “Prognostic significance of allelic imbalance at the c-kit gene locus and c-kit overexpression by immunohistochemistry in pediatric osteosarcomas,” Journal of Clinical Oncology, vol. 23, no. 10, pp. 2248–2255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. J. J. Garcia, M. J. Kramer, R. J. O'Donnell, and A. E. Horvai, “Mismatch repair protein expression and microsatellite instability: a comparison of clear cell sarcoma of soft parts and metastatic melanoma,” Modern Pathology, vol. 19, no. 7, pp. 950–957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Alldinger, K. L. Schaefer, D. Goedde et al., “Microsatellite instability in Ewing tumor is not associated with loss of mismatch repair protein expression,” Journal of Cancer Research and Clinical Oncology, vol. 133, no. 10, pp. 749–759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Oda, E. Oki, Y. Maehara, and K. Sugimachi, “Precise assessment of microsatellite instability using high resolution fluorescent microsatellite analysis,” Nucleic Acids Research, vol. 25, no. 17, pp. 3415–3420, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Shinde, Y. Lai, F. Sun, and N. Arnheim, “Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites,” Nucleic Acids Research, vol. 31, no. 3, pp. 974–980, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Ginot, I. Bordelais, S. Nguyen, and G. Gyapay, “Correction of some genotyping errors in automated fluorescent microsatellite analysis by enzymatic removal of one base overhangs,” Nucleic Acids Research, vol. 24, no. 3, pp. 540–541, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. A. H. Reitmair, M. Redston, J. C. Cai et al., “Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice,” Cancer Research, vol. 56, no. 16, pp. 3842–3849, 1996. View at Google Scholar · View at Scopus
  54. A. H. Reitmair, J. C. Cai, M. Bjerknes et al., “MSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis,” Cancer Research, vol. 56, no. 13, pp. 2922–2926, 1996. View at Google Scholar · View at Scopus
  55. D. Figeys, A. Renborg, and N. J. Dovichi, “Labeling of double-stranded DNA by ROX-dideoxycytosine triphosphate using terminal deoxynucleotidyl transferase and separation by capillary electrophoresis,” Analytical Chemistry, vol. 66, no. 23, pp. 4382–4383, 1994. View at Google Scholar · View at Scopus
  56. K. I. Kawaguchi, Y. Oda, T. Takahira et al., “Microsatellite instability and hMLH1 and hMSH2 expression analysis in soft tissue sarcomas,” Oncology Reports, vol. 13, no. 2, pp. 241–246, 2005. View at Google Scholar · View at Scopus
  57. E. Vilar and S. B. Gruber, “Microsatellite instability in colorectal cancer-the stable evidence,” Nature Reviews. Clinical Oncology, vol. 7, no. 3, pp. 153–162, 2010. View at Google Scholar
  58. Y. Maehara, S. Oda, and K. Sugimachi, “The instability within: problems in current analyses of microsatellite instability,” Mutation Research, vol. 461, no. 4, pp. 249–263, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Guillon, F. Tirode, V. Boeva, A. Zynovyev, E. Barillot, and O. Delattre, “The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function,” PLoS One, vol. 4, no. 3, Article ID e4932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. O. Delattre, J. Zucman, T. Melot et al., “The Ewing family of tumors—A subgroup of small-round-cell tumors defined by specific chimeric transcripts,” New England Journal of Medicine, vol. 331, no. 5, pp. 294–299, 1994. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Smith, L. A. Owen, D. J. Trem et al., “Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma,” Cancer Cell, vol. 9, no. 5, pp. 405–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kinsey, R. Smith, and S. L. Lessnick, “NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's sarcoma,” Molecular Cancer Research, vol. 4, no. 11, pp. 851–859, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. O. M. Tirado, S. Mateo-Lozano, J. Villar et al., “Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing's sarcoma cells,” Cancer Research, vol. 66, no. 20, pp. 9937–9947, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. W. Luo, K. Gangwal, S. Sankar, K. M. Boucher, D. Thomas, and S. L. Lessnick, “GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing's sarcoma oncogenesis and therapeutic resistance,” Oncogene, vol. 28, no. 46, pp. 4126–4132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. E. García-Aragoncillo, J. Carrillo, E. Lalli et al., “DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells,” Oncogene, vol. 27, no. 46, pp. 6034–6043, 2008. View at Publisher · View at Google Scholar · View at Scopus