Table of Contents
ISRN Pharmaceutics
Volume 2012 (2012), Article ID 474830, 14 pages
http://dx.doi.org/10.5402/2012/474830
Review Article

Lipoidal Soft Hybrid Biocarriers of Supramolecular Construction for Drug Delivery

Department of Pharmaceutics, CT Institute of Pharmaceutical Sciences, Jalandhar 144020, India

Received 27 March 2012; Accepted 3 May 2012

Academic Editors: M. Li and M. Moneghini

Copyright © 2012 Dinesh Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Abrol, A. Trehan, and O. P. Katare, “Comparative study of different silymarin formulations: formulation, characterisation and in vitro/in vivo evaluation,” Current Drug Delivery, vol. 2, no. 1, pp. 45–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Gupta, “Biocompatible microemulsion systems for drug encapsulation and delivery,” Current Science, vol. 101, no. 2, pp. 174–188, 2011. View at Google Scholar · View at Scopus
  3. S. K. Dubey, A. Pandey, R. Mishra, N. Kapoor, A. Tiwari, and K. Misra, “Site directed drug delivery by non-viral mode,” Indian Journal of Biotechnology, vol. 6, no. 2, pp. 159–174, 2007. View at Google Scholar · View at Scopus
  4. A. Chonn and P. R. Cullis, “Recent advances in liposomal drug-delivery systems,” Current Opinion in Biotechnology, vol. 6, no. 6, pp. 698–708, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Fadeel and D. Xue, “The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease,” Critical Reviews in Biochemistry and Molecular Biology, vol. 44, no. 5, pp. 264–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Fricker, T. Kromp, A. Wendel et al., “Phospholipids and lipid-based formulations in oral drug delivery,” Pharmaceutical Research, vol. 27, no. 8, pp. 1469–1486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Agnihotri, S. Saraf, and A. Khale, “Targeting: new potential carriers for targeted drug delivery system,” International Journal of Pharmaceutical Sciences Review and Research, vol. 8, no. 2, pp. 117–123, 2011. View at Google Scholar
  8. R. P. Singh, P. Singh, V. Mishra, D. Prabakaran, and S. P. Vyas, “Vesicular systems for non-invasive topical immunization: rationale and prospects,” Indian Journal of Pharmacology, vol. 34, no. 5, pp. 301–310, 2002. View at Google Scholar · View at Scopus
  9. P. N. Gupta, P. Singh, V. Mishra, S. Jain, P. K. Dubey, and S. P. Vyas, “Topical immunization: mechanistic insight and novel delivery systems,” Indian Journal of Biotechnology, vol. 3, no. 1, pp. 9–21, 2004. View at Google Scholar · View at Scopus
  10. S. Gupta, R. P. Singh, P. Lokwani, S. Yadav, and S. K. Gupta, “Vesicular system as targeted drug delivery system: an overview,” International Journal of Pharmacy and Technology, vol. 3, no. 2, pp. 987–1021, 2011. View at Google Scholar · View at Scopus
  11. T. Kato and J. E. Bara, “Supermolecuar liquid crystals,” in Structure and Bonding, vol. 128 of Liquid crystalline functional assemblies and their supramolecular structures, Springer, Berlin, Germany, 2008. View at Google Scholar
  12. J. W. Steed, D. R. Turner, and K. J. Wallace, Core Concepts in Supramolecular Chemistry and Nanochemistry, John Wiley, New York, NY, USA, 2007.
  13. K. Ariga and T. Kunitake, Supramolecular Chemistry-Fundamentals and Applications, Springer, Berlin, Germany, 2008.
  14. A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of univalent ions across the lamellae of swollen phospholipids,” Journal of Molecular Biology, vol. 13, no. 1, pp. 238–252, 1965. View at Google Scholar · View at Scopus
  15. M. García, T. Forbe, and E. Gonzalez, “Potential applications of nanotechnology in the agro-food sector,” Ciencia e Tecnologia de Alimentos, vol. 30, no. 3, pp. 573–581, 2010. View at Google Scholar · View at Scopus
  16. D. C. Johnson, M. Wittels, and P. G. Spear, “Binding to cells of virosomes containing herpes simplex virus type 1 glycoproteins and evidence for fusion,” Journal of Virology, vol. 52, no. 1, pp. 238–247, 1984. View at Google Scholar · View at Scopus
  17. A. Sharma, S. Jain, M. Modi, V. Vashisht, and H. Singh, “Recent advances in NDDS (Novel drug delivery systems) for delivery of Anti-HIV drugs,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 1, no. 3, pp. 78–88, 2010. View at Google Scholar · View at Scopus
  18. T. Benvegnu, G. Réthoré, M. Brard, W. Richter, and D. Plusquellec, “Archaeosomes based on novel synthetic tetraether-type lipids for the development of oral delivery systems,” Chemical Communications, no. 44, pp. 5536–5538, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Shukla, B. Singh, and O. P. Katare, “Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes,” British Journal of Pharmacology, vol. 164, pp. 820–827, 2011. View at Google Scholar
  20. N. A. Ochekpe, P. O. Olorunfemi, and N. C. Ngwuluka, “Nanotechnology and drug delivery part 2: nanostructures for drug delivery,” Tropical Journal of Pharmaceutical Research, vol. 8, no. 3, pp. 275–287, 2009. View at Google Scholar · View at Scopus
  21. J. Y. Fang, “Nano- or submicron-sized liposomes as carriers for drug delivery,” Chang Gung Medical Journal, vol. 29, no. 4, pp. 358–362, 2006. View at Google Scholar · View at Scopus
  22. S. T. Prajapati, C. G. Patel, and C. N. Patel, “Transfersomes: a vesicular carrier system for transdermal drug delivery,” Asian Journal of Biochemical and Pharmaceutical Research, vol. 1, no. 2, pp. 507–524, 2011. View at Google Scholar
  23. L. M. Negi, A. K. Garg, and M. Chauhan, “Ultradeformable vesicles: concept and execution,” Pharma Times, vol. 41, no. 9, pp. 11–14, 2009. View at Google Scholar · View at Scopus
  24. P. R. Kulkarni, J. D. Yadav, K. A. Vaidya, and P. P. Gandhi, “Transferosomes: an emerging tool for transdermal drug delivery,” International Journal of Pharmaceutical Sciences and Research, vol. 2, no. 4, pp. 735–741, 2011. View at Google Scholar
  25. S. Duangjit, P. Opanasopit, T. Rojanarata, and T. Ngawhirunpat, “Characterization and invitro skin permeation of meloxicam-loaded liposomes versus transfersomes,” Journal of Drug Delivery, vol. 2011, Article ID 418316, 9 pages, 2011. View at Google Scholar
  26. S. Pandey, M. Goyani, V. Devmurari, and J. Fakir, “Transferosomes: a novel approach for transdermal drug delivery,” Der Pharmacia Lettre, vol. 1, no. 2, pp. 143–150, 2009. View at Google Scholar
  27. R. Patel, S. K. Singh, S. Singh, N. R. Sheth, and R. Gendle, “Development and characterization of curcumin loaded transfersome for transdermal delivery,” Journal of Pharmaceutical Sciences and Research, vol. 1, no. 4, pp. 71–80, 2009. View at Google Scholar · View at Scopus
  28. S. Saraf, G. Jeswani, C. D. Kaur, and S. Saraf, “Development of novel herbal cosmetic cream with curcuma longa extract loaded transfersomes for antiwrinkle effect,” African Journal of Pharmacy and Pharmacology, vol. 5, no. 8, pp. 1054–1062, 2011. View at Google Scholar
  29. S. M. Gavali, S. S. Pacharane, K. R. Jadhav, and V. J. Kadam, “Clinical P transfersome: a new technique for transdermal drug delivery,” International Journal of Research in Pharmacy and Chemistry, vol. 1, no. 3, pp. 735–740, 2011. View at Google Scholar
  30. V. Bhardwaj, V. Shukla, A. Singh, R. Malviya, and K. Sharma, “Transfersomes ultra flexible vesicles for transdermal delivery,” International Journal of Pharmaceutical Sciences and Research, vol. 1, no. 3, pp. 12–20, 2010. View at Google Scholar
  31. A. Semalty, M. Semalty, D. Singh, and M. S. M. Rawat, “Development and physicochemical evaluation of pharmacosomes of diclofenac,” Acta Pharmaceutica, vol. 59, no. 3, pp. 335–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Kavitha, J. Naga Sowjanya, and S. Panaganti, “Pharmacosomes: an emerging vesicular system,” International Journal of Pharmaceutical Sciences Review and Research, vol. 5, no. 3, pp. 168–171, 2010. View at Google Scholar · View at Scopus
  33. A. Semalty, M. Semalty, D. Singh, and M. S. M. Rawat, “Development and characterization of aspirin-phospholipid complex for improved drug delivery,” International Journal of Pharmaceutical Sciences and Nanotechnology, vol. 3, no. 2, pp. 940–947, 2010. View at Google Scholar
  34. P. Verma, “Transdermal penetration efficacy of ethosomal systems with and without penetration enhancer: a comparative study,” International Journal of Pharmaceutical Sciences and Research, vol. 2, no. 9, pp. 2472–2474, 2011. View at Google Scholar
  35. R. Cortesi, R. Romagnoli, M. Drechsler et al., “Liposomes- and ethosomes-associated distamycins: a comparative study,” Journal of Liposome Research, vol. 20, no. 4, pp. 277–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. R. He, D. X. Cui, and F. Gao, “Preparation of fluorescence ethosomes based on quantum dots and their skin scar penetration properties,” Materials Letters, vol. 63, no. 20, pp. 1662–1664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Akiladevi and S. Basak, “Ethosomes—a noninvasive approach for transdermal drug delivery,” International Journal of Current Pharmaceutical Research, vol. 2, no. 4, pp. 1–4, 2010. View at Google Scholar
  38. A. Sheer and M. Chauhan, “Ethosomes as vesicular carrier for enhanced transdermal delivery of ketoconazole—formulation and evaluation,” IJPI's Journal of Pharmaceutics and Cosmetology, vol. 1, no. 3, pp. 1–14, 2011. View at Google Scholar
  39. M. K. Bhalaria, S. Naik, and A. N. Misra, “Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases,” Indian Journal of Experimental Biology, vol. 47, no. 5, pp. 368–375, 2009. View at Google Scholar · View at Scopus
  40. E. Esposito, E. Menegatti, and R. Cortesi, “Ethosomes and liposomes as topical vehicles for azelaic acid: a preformulation study,” Journal of Cosmetic Science, vol. 55, no. 3, pp. 253–264, 2004. View at Google Scholar · View at Scopus
  41. A. K. Garg, L. M. Negi, and M. Chauhan, “Gel containing ethosomal vesicles for transdermal delivery of aceclofenac,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 2, pp. 102–108, 2010. View at Google Scholar · View at Scopus
  42. M. R. Vijayakumar, A. H. Sathali, and K. Arun, “Formulation and evaluation of diclofenac potassium ethosomes,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 82–86, 2010. View at Google Scholar
  43. J. Patel, R. Patel, K. Khambholja, and N. Patel, “An overview of phytosomes as an advanced herbal drug delivery system,” Asian Journal of Pharmaceutical Sciences, vol. 4, no. 6, pp. 363–371, 2009. View at Google Scholar · View at Scopus
  44. K. R. Vinod, S. Sandhya, J. Chandrashekar et al., “A review on genesis and characterization of phytosomes,” International Journal of Pharmaceutical Sciences Review and Research, vol. 4, no. 3, pp. 69–75, 2010. View at Google Scholar · View at Scopus
  45. V. S. Kumar and K. Asha, “Herbosome—a novel carrier for herbal drug delivery,” International Journal of Current Pharmaceutical Research, vol. 3, no. 3, pp. 36–41, 2011. View at Google Scholar
  46. N. P. Jain, B. P. Gupta, N. Thakur et al., “Phytosome: a novel drug delivery system for herbal medicine,” International Journal of Pharmaceutical Sciences and Drug Research, vol. 2, no. 4, pp. 224–228, 2010. View at Google Scholar · View at Scopus
  47. H. Ishikawa, Y. Shimoda, and K. Matsumoto, “Liposomal microcapsulation of enzymes by proliposome method with chitosan-coating,” Journal of the Faculty of Agriculture, Kyushu University, vol. 50, no. 1, pp. 141–149, 2005. View at Google Scholar · View at Scopus
  48. W. Rojanarat, N. Changsan, E. Tawithong, S. Pinsuwan, H. K. Chan, and T. Srichana, “Isoniazid proliposome powders for inhalation-preparation, characterization and cell culture studies,” International Journal of Molecular Sciences, vol. 12, no. 7, pp. 4414–4434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. N. A. Kshirsagar, “Drug delivery systems,” Indian Journal of Pharmacology, vol. 32, supplement 4, pp. S54–S61, 2000. View at Google Scholar · View at Scopus
  50. A. Ghosh, T. Ghosh, and S. Jain, “Silymarin-a review on the pharmacodynamics and bioavailability enhancement approaches,” Journal of Pharmaceutical Science and Technology, vol. 2, no. 10, pp. 348–355, 2010. View at Google Scholar
  51. H. Ishikawa, Y. Shimoda, and K. Matsumoto, “Preparation of liposomal microcapsules by proliposome method with soybean lecithin,” Journal of the Faculty of Agriculture, vol. 49, no. 1, pp. 119–127, 2004. View at Google Scholar · View at Scopus
  52. V. Gupta, R. Agrawal, and P. Trivedi, “Reduction in cisplatin genotoxicity (micronucleus formation) in non target cells of mice by protransfersome gel formulation used for management of cutaneous squamous cell carcinoma,” Acta Pharmaceutica, vol. 61, no. 1, pp. 63–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Awasthi, G. T. Kulkarni, and V. K. Pawar, “Phytosomes: an approach to increase the bioavailability of plant extracts,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, no. 2, pp. 1–3, 2011. View at Google Scholar · View at Scopus
  54. P. Kidd and K. Head, “A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (siliphos),” Alternative Medicine Review, vol. 10, no. 3, pp. 193–203, 2005. View at Google Scholar · View at Scopus
  55. P. G. Sindhumol, M. Thomas, and P. S. Mohanachandran, “Phytosomes: a novel dosage form for enhancement of bioavailability of botanicals and neutraceuticals,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 10–14, 2010. View at Google Scholar · View at Scopus
  56. S. Khatry, Sirish, N. Shastri, and M. Sadanandam, “Novel drug delivery systems for antifungal therapy,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 6–9, 2010. View at Google Scholar
  57. V. R. Sankar and Y. D. Reddy, “Nanocochleate—a new approach in lipid drug delivery,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 220–223, 2010. View at Google Scholar
  58. V. Panwar, V. Mahajan, A. S. Panwar, G. N. Darwhekar, and D. K. Jain, “Nanocochleate: as drug delivery vehicle,” International Journal of Pharmacy and Biological Sciences, vol. 1, no. 1, pp. 31–38, 2011. View at Google Scholar
  59. T. Ramasamy, U. Khandasamy, R. Hinabindhu, and K. Kona, “Nanocochleate—a new drug delivery system,” FABAD Journal of Pharmaceutical Sciences, vol. 34, pp. 91–101, 2009. View at Google Scholar
  60. G. D. Sprott, C. J. Dicaire, K. Gurnani, L. A. Deschatelets, G. B. Patel, and L. Krishnan, “Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses,” Vaccine, vol. 22, no. 17-18, pp. 2154–2162, 2004. View at Google Scholar
  61. K. Gurnani, J. Kennedy, S. Sad, G. D. Sprott, and L. Krishnan, “Phosphatidylserine receptor-mediated recognition of archaeosome adjuvant promotes endocytosis and MHC class I cross-presentation of the entrapped antigen by phagosome-to-cytosol transport and classical processing,” Journal of Immunology, vol. 173, no. 1, pp. 566–578, 2004. View at Google Scholar · View at Scopus
  62. M. A. Ansari, S. Zubair, A. Mahmood et al., “RD antigen based nanovaccine imparts long term protection by inducing memory response against experimental murine tuberculosis,” PLoS ONE, vol. 6, no. 8, Article ID e22889, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. R. O. Gonzalez, L. H. Higa, R. A. Cutrullis et al., “Archaeosomes made of Halorubrum tebenquichense total polar lipids: a new source of adjuvancy,” BMC Biotechnology, vol. 9, article 71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. G. D. Sprott, J. P. Côté, and H. C. Jarrell, “Glycosidase-induced fusion of isoprenoid gentiobiosyl lipid membranes at acidic pH,” Glycobiology, vol. 19, no. 3, pp. 267–276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. G. D. Sprott, D. L. Tolson, and G. B. Patel, “Archaeosomes as novel antigen delivery systems,” FEMS Microbiology Letters, vol. 154, no. 1, pp. 17–22, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, “The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo,” Journal of Immunology, vol. 166, no. 3, pp. 1885–1893, 2001. View at Google Scholar · View at Scopus
  67. M. J. Morilla, D. M. Gomez, P. Cabral et al., “M cells prefer archaeosomes: an in vitro/in vivo snapshot upon oral gavage in rats,” Current Drug Delivery, vol. 8, no. 3, pp. 320–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Krishnan, L. Deschatelets, F. C. Stark, K. Gurnani, and G. D. Sprott, “Archaeosome adjuvant overcomes tolerance to tumor-associated melanoma antigens inducing protective CD8+ T cell responses,” Clinical and Developmental Immunology, vol. 2010, Article ID 578432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, “Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge,” Cancer Research, vol. 63, no. 10, pp. 2526–2534, 2003. View at Google Scholar · View at Scopus
  70. L. Krishnan, C. J. Dicaire, G. B. Patel, and G. D. Sprott, “Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum,” Infection and Immunity, vol. 68, no. 1, pp. 54–63, 2000. View at Google Scholar · View at Scopus
  71. J. Barbeau, S. C. Marion, P. Auvray, and T. Benvegnu, “Preparation and characterization of stealth archaeosomes based on a synthetic pegylated archaeal tetraether lipid,” Journal of Drug Delivery, vol. 2011, Article ID 396068, 11 pages, 2011. View at Google Scholar
  72. G. D. Sprott, S. Sad, L. P. Fleming, C. J. Dicaire, G. B. Patel, and L. Krishnan, “Archaeosomes varying in lipid composition differ in receptor-mediated endocytosis and differentially adjuvant immune responses to entrapped antigen,” Archaea, vol. 1, no. 3, pp. 151–164, 2003. View at Google Scholar · View at Scopus
  73. D. G. Sprott, C. J. Dicaire, J. P. Côté, and D. M. Whitfield, “Adjuvant potential of archaeal synthetic glycolipid mimetics critically depends on the glyco head group structure,” Glycobiology, vol. 18, no. 7, pp. 559–565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Réthoré, T. Montier, T. Le Gall et al., “Archaeosomes based on synthetic tetraether-like lipids as novel versatile gene delivery systems,” Chemical Communications, no. 20, pp. 2054–2056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Saraf, S. Paliwal, and S. Sara, “Sphingosomes a novel appoach to vesicular drug delivery,” International Journal of Current Scientific Research, vol. 1, no. 2, pp. 63–68, 2011. View at Google Scholar
  76. J. D. Almeida, D. C. Edwards, C. M. Brand, and T. D. Heath, “Formation of Virosomes from Influenza Subunits and Liposomes,” The Lancet, vol. 306, no. 7941, pp. 899–901, 1975. View at Google Scholar
  77. A. Homhuan and S. Prakongpan, “Use of a dialyzable short-chain phospholipid for efficient preparation of virosome vaccines against newcastle disease,” Thai Journal of Pharmaceutical Sciences, vol. 31, pp. 63–73, 2007. View at Google Scholar
  78. L. Bungener, A. Huckriede, J. Wilschut, and T. Daemen, “Delivery of protein antigens to the immune system by fusion-active virosomes: a comparison with liposomes and ISCOMs,” Bioscience Reports, vol. 22, no. 2, pp. 323–338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Amacker, O. Engler, A. R. Kammer et al., “Peptide-loaded chimeric influenza virosomes for efficient in vivo induction of cytotoxic T cells,” International Immunology, vol. 17, no. 6, pp. 695–704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Bomsel, D. Tudor, A. S. Drillet et al., “Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges,” Immunity, vol. 34, no. 2, pp. 269–280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. A. J. De Siervo, “Alterations in the phospholipid composition of Escherichia coli B during growth at different temperatures,” Journal of Bacteriology, vol. 100, no. 3, pp. 1342–1349, 1969. View at Google Scholar · View at Scopus
  82. L. O. Ingram, “Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives,” Applied and Environmental Microbiology, vol. 33, no. 5, pp. 1233–1236, 1977. View at Google Scholar · View at Scopus
  83. J. E. Cronan, “Phospholipid alterations during growth of Escherichia coli,” Journal of Bacteriology, vol. 95, no. 6, pp. 2054–2061, 1968. View at Google Scholar · View at Scopus
  84. T. M. Buttke and L. O'Neal Ingram, “Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo,” Biochemistry, vol. 17, no. 4, pp. 637–644, 1978. View at Google Scholar · View at Scopus
  85. N. Ahmad, F. Deeba, S. M. Faisal et al., “Role of fusogenic non-pc liposomes in elicitation of protective immune response against experimental murine salmonellosis,” Biochimie, vol. 88, no. 10, pp. 1391–1400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Singha, A. I. Mallick, C. Jana et al., “Escheriosomes entrapped DNA vaccine co-expressing Cu-Zn superoxide dismutase and IL-18 confers protection against Brucella abortus,” Microbes and Infection, vol. 10, no. 10-11, pp. 1089–1096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. F. M. Syed, M. A. Khan, T. H. Nasti, N. Ahmad, and O. Mohammad, “Antigen entrapped in the escheriosomes leads to the generation of CD4+ helper and CD8+ cytotoxic T cell response,” Vaccine, vol. 21, no. 19-20, pp. 2383–2393, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Chauhan, Z. Swaleha, N. Ahmad et al., “Escheriosome mediated cytosolic delivery of candida albicans cytosolic proteins induces enhanced cytotoxic T lymphocyte response and protective immunity,” Vaccine, vol. 29, no. 33, pp. 5424–5433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. A. I. Mallick, H. Singha, S. Khan et al., “Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against murine brucellosis,” Vaccine, vol. 25, no. 46, pp. 7873–7884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. S. K. Sharma, A. Dube, A. Nadeem et al., “Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis,” Vaccine, vol. 24, no. 11, pp. 1800–1810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. S. M. Faisal, W. Yan, S. P. McDonough, C. F. Chang, M. J. Pan, and Y. F. Chang, “Leptosome-entrapped leptospiral antigens conferred significant higher levels of protection than those entrapped with PC-liposomes in a hamster model,” Vaccine, vol. 27, no. 47, pp. 6537–6545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Deeba, H. N. Tahseen, K. S. Sharad et al., “Phospholipid diversity: correlation with membrane-membrane fusion events,” Biochimica et Biophysica Acta, vol. 1669, no. 2, pp. 170–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. H. N. Shivakumar, P. B. Patel, B. G. Desai, P. Ashok, and S. Arulmozhi, “Design and statistical optimization of glipizide loaded lipospheres using response surface methodology,” Acta Pharmaceutica, vol. 57, no. 3, pp. 269–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. E. V. Hersh, M. Maniar, M. Green, and S. A. Cooper, “Anesthetic activity of the lipospheres bupivacaine delivery system in the rat,” Anesthesia Progress, vol. 39, no. 6, pp. 197–200, 1992. View at Google Scholar · View at Scopus
  95. L. Veerappan and S. Reddy, “Formulation development and evaluation of flurbiprofen lipospheres,” International Journal for the Advancement of Science & Arts, vol. 1, no. 1, pp. 90–95, 2010. View at Google Scholar
  96. M. Nasr, S. Mansour, N. D. Mortada, and A. A. El Shamy, “Lipospheres as carriers for topical delivery of aceclofenac: preparation, characterization and in vivo evaluation,” AAPS PharmSciTech, vol. 9, no. 1, pp. 154–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. M. R. Singh, D. Singh, and S. Saraf, “Influence of selected formulation variables on the preparation of peptide loaded lipospheres,” Trends in Medical Research, vol. 6, no. 2, pp. 101–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Cavalli, S. Morel, M. R. Gasco, P. Chetoni, and M. F. Saettone, “Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair,” International Journal of Pharmaceutics, vol. 117, no. 2, pp. 243–246, 1995. View at Publisher · View at Google Scholar · View at Scopus
  99. D. B. Masters and A. J. Domb, “Liposphere local anesthetic timed-release for perineural site application,” Pharmaceutical Research, vol. 15, no. 7, pp. 1038–1045, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. A. J. Khopade, C. Shelly, N. K. Pandit, and U. V. Banakar, “Liposphere based lipoprotein-mimetic delivery system for 6-mercaptopurine,” Journal of Biomaterials Applications, vol. 14, no. 4, pp. 389–398, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Umrethia, P. K. Ghosh, R. Majithya, and R. S. R. Murthy, “6-mercaptopurine (6-MP) entrapped stealth liposomes for improvement of leukemic treatment without hepatotoxicity and nephrotoxicity,” Cancer Investigation, vol. 25, no. 2, pp. 117–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. A. A. Attama, C. E. Okafor, P. F. Builders, and O. Okorie, “Formulation and in vitro evaluation of a PEGylated microscopic lipospheres delivery system for ceftriaxone sodium,” Drug Delivery, vol. 16, no. 8, pp. 448–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Del Pino, A. Munoz-Javier, D. Vlaskou, P. Rivera Gil, C. Plank, and W. J. Parak, “Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA,” Nano Letters, vol. 10, no. 10, pp. 3914–3921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. M. R. Singh, D. Singh, and S. Saraf, “Development and in vitro evaluation of polar lipid based lipospheres for oral delivery of peptide drugs,” International Journal of Drug Delivery, vol. 3, no. 1, pp. 15–26, 2011. View at Google Scholar · View at Scopus
  105. J. M. Gebicki and M. Hicks, “Preparation and properties of vesicles enclosed by fatty acid membranes,” Chemistry and Physics of Lipids, vol. 16, no. 2, pp. 142–160, 1976. View at Google Scholar · View at Scopus
  106. J. M. Gebicki and M. Hicks, “Ufasomes are stable particles surrounded by unsaturated fatty acid membranes,” Nature, vol. 243, no. 5404, pp. 232–234, 1973. View at Publisher · View at Google Scholar · View at Scopus
  107. D. M. Patel, R. H. Jani, and C. N. Patel, “Ufasomes: a vesicular drug delivery,” Systematic Reviews in Pharmacy, vol. 2, no. 2, pp. 72–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Hicks and J. M. Gebicki, “Microscopic studies of fatty acid vesicles,” Chemistry and Physics of Lipids, vol. 20, no. 3, pp. 243–252, 1977. View at Google Scholar · View at Scopus
  109. M. Murakami, H. Yoshikawa, K. Takada, and S. Muranishi, “Effect of oleic acid vesicles on intestinal absorption of carboxyfluorescein in rats,” Pharmaceutical Research, vol. 3, no. 1, pp. 35–40, 1986. View at Google Scholar · View at Scopus
  110. H. Fukui, M. Murakami, K. Takada, and S. Muranishi, “Combinative promotion effect of azone and fusogenic fatty acid on the large intestinal absorption in rat,” International Journal of Pharmaceutics, vol. 31, no. 3, pp. 239–246, 1986. View at Google Scholar · View at Scopus
  111. P. V. Naik and S. G. Dixit, “Ufasomes as plausible carriers for horizontal gene transfer,” Journal of Dispersion Science and Technology, vol. 29, no. 6, pp. 804–808, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Blume and G. Cevc, “Drug-carrier and stability properties of the long-lived lipid vesicles, cryptosomes, in vitro and in vivo,” Journal of Liposome Research, vol. 2, no. 3, pp. 355–368, 1992. View at Google Scholar · View at Scopus
  113. G. Blume and G. Cevc, “Molecular mechanism of the lipid vesicle longevity in vivo,” Biochimica et Biophysica Acta, vol. 1146, no. 2, pp. 157–168, 1993. View at Publisher · View at Google Scholar · View at Scopus
  114. M. L. Immordino, F. Dosio, and L. Cattel, “Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential,” International Journal of Nanomedicine, vol. 1, no. 3, pp. 297–315, 2006. View at Google Scholar · View at Scopus
  115. A. A. Gabizon, “Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet,” Clinical Cancer Research, vol. 7, no. 2, pp. 223–225, 2001. View at Google Scholar · View at Scopus
  116. T. M. Allen, T. Mehra, C. Hansen, and Y. C. Chin, “Stealth liposomes: an improved sustained release system for 1-beta-D- arabinofuranosylcytosine,” Cancer Research, vol. 52, no. 9, pp. 2431–2439, 1992. View at Google Scholar · View at Scopus
  117. S. P. Vyas, R. Subhedar, and S. Jain, “Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver,” Journal of Pharmacy and Pharmacology, vol. 58, no. 3, pp. 321–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. S. Gupta, A. Dube, and S. P. Vyas, “Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis,” Journal of Drug Targeting, vol. 15, no. 6, pp. 437–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Pal, S. Gupta, A. Jaiswal, A. Dube, and S. P. Vyas, “Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis,” Journal of Liposome Research, vol. 22, no. 1, pp. 62–71, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Gupta and S. P. Vyas, “Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting,” Journal of Drug Targeting, vol. 15, no. 3, pp. 206–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. G. H. Lowell, R. W. Kaminski, T. C. VanCott et al., “Proteosomes, emulsomes, and cholera toxin B improve nasal immunogenicity of human immunodeficiency virus gp160 in mice: induction of serum, intestinal, vaginal, and lung IgA and IgG,” Journal of Infectious Diseases, vol. 175, no. 2, pp. 292–301, 1997. View at Google Scholar · View at Scopus
  122. F. Nacka, M. Cansell, J. P. Gouygou, C. Gerbeaud, P. Méléard, and B. Entressangles, “Physical and chemical stability of marine lipid-based liposomes under acid conditions,” Colloids and Surfaces B, vol. 20, no. 3, pp. 257–266, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. M. S. Cansell, N. Moussaoui, and M. Mancini, “Prostaglandin E2 and interleukin-8 production in human epidermal keratinocytes exposed to marine lipid-based liposomes,” International Journal of Pharmaceutics, vol. 343, no. 1-2, pp. 277–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. N. Moussaoui, M. Cansell, and A. Denizot, “Marinosomes, marine lipid-based liposomes: physical characterization and potential application in cosmetics,” International Journal of Pharmaceutics, vol. 242, no. 1-2, pp. 361–365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Cansell, N. Moussaoui, and C. Lefrancois, “Stability of marine lipid based-liposomes under acid conditions. Influence of xanthan gum,” Journal of Liposome Research, vol. 11, no. 2-3, pp. 229–242, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Cansell, F. Nacka, and N. Combe, “Marine lipid-based liposomes increase in vivo FA bioavailability,” Lipids, vol. 38, no. 5, pp. 551–559, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. F. Nacka, M. Cansell, and B. Entressangles, “In vitro behavior of marine lipid-based liposomes. Influence of pH, temperature, bile salts, and phospholipase A2,” Lipids, vol. 36, no. 1, pp. 35–42, 2001. View at Google Scholar · View at Scopus
  128. V. B. Patravale and S. D. Mandawgade, “Novel cosmetic delivery systems: an application update,” International Journal of Cosmetic Science, vol. 30, no. 1, pp. 19–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. M. M. Gaspar, M. B. Martins, M. L. Corvo, and M. E. M. Cruz, “Design and characterization of enzymosomes with surface-exposed superoxide dismutase,” Biochimica et Biophysica Acta, vol. 1609, no. 2, pp. 211–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  130. M. M. Gaspar, O. C. Boerman, P. Laverman, M. L. Corvo, G. Storm, and M. E. M. Cruz, “Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis,” Journal of Controlled Release, vol. 117, no. 2, pp. 186–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. M. H. Vingerhoeds, H. J. Haisma, S. O. Belliot, R. H. P. Smit, D. J. A. Crommelin, and G. Storm, “Immunoliposomes as enzyme-carriers (immuno-enzymosomes) for antibody-directed enzyme prodrug therapy (ADEPT): optimization of prodrug activating capacity,” Pharmaceutical Research, vol. 13, no. 4, pp. 604–610, 1996. View at Publisher · View at Google Scholar · View at Scopus
  132. M. J. Fonseca, H. J. Haisma, S. Klaassen, M. H. Vingerhoeds, and G. Storm, “Design of immuno-enzymosomes with maximum enzyme targeting capability: effect of the enzyme density on the enzyme targeting capability and cell binding properties,” Biochimica et Biophysica Acta, vol. 1419, no. 2, pp. 272–282, 1999. View at Publisher · View at Google Scholar · View at Scopus
  133. R. Podgornik, “Supporting membrane shape instability in the presence of strongly adsorbed flexible polymers,” Langmuir, vol. 13, no. 18, pp. 4791–4794, 1997. View at Google Scholar · View at Scopus
  134. A. Rodríguez-Pulido, E. Aicart, O. Llorca, and E. Junquera, “Compaction process of calf thymus DNA by mixed cationic-zwitterionic liposomes: a physicochemical study,” Journal of Physical Chemistry B, vol. 112, no. 7, pp. 2187–2197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. D. Lasic, “Liposomes in gene delivery,” Biophysical Journal, vol. 74, pp. 2138–2139, 1998. View at Google Scholar
  136. J. Cuppoletti, E. Mayhew, C. R. Zobel, and C. Y. Jung, “Erythrosomes: large proteoliposomes derived from crosslinked human erythrocyte cytoskeletons and exogenous lipid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 5, pp. 2786–2790, 1981. View at Google Scholar · View at Scopus
  137. V. Mishra, S. Mahor, A. Rawat et al., “Development of novel fusogenic vesosomes for transcutaneous immunization,” Vaccine, vol. 24, no. 27-28, pp. 5559–5570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. P. T. Spicer, “Progress in liquid crystalline dispersions: cubosomes,” Current Opinion in Colloid and Interface Science, vol. 10, no. 5-6, pp. 274–279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. R. Hirlekar, S. Jain, M. Patel, H. Garse, and V. Kadam, “Hexosomes: a novel drug delivery system,” Current Drug Delivery, vol. 7, no. 1, pp. 28–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Shahiwala and A. Misra, “Studies in topical application of niosomally entrapped nimesulide,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 3, pp. 220–225, 2002. View at Google Scholar · View at Scopus
  141. S. Bhaskaran and P. K. Lakshmi, “Comparative evaluation of niosome formulations prepared by different techniques,” Acta Pharmaceutica Sciencia, vol. 51, no. 1, pp. 27–32, 2009. View at Google Scholar · View at Scopus
  142. R. K. Keservani, A. K. Sharma, M. Ayaz, and R. K. Kesharwani, “Novel drug delivery system for the vesicular delivery of drug by the niosomes,” International Journal of Research in Controlled Release, vol. 1, no. 1, pp. 1–8, 2011. View at Google Scholar
  143. V. S. Jatav, S. K. Singh, P. Khatri, A. K. Sharma, and R. Singh, “Formulation and in-vitro evaluation of rifampicin-loaded niosomes,” Journal of Chemical and Pharmaceutical Research, vol. 3, no. 2, pp. 199–203, 2011. View at Google Scholar · View at Scopus
  144. S. Paul, R. Mondol, S. Ranjit, and S. Maiti, “Anti-glaucomatic niosomal system: recent trend in ocular drug delivery research,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 2, pp. 15–18, 2010. View at Google Scholar · View at Scopus
  145. J. Vyas, P. Vyas, and K. Sawant, “Formulation and evaluation of topical niosomal gel of erythromycin,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, no. 1, pp. 123–126, 2011. View at Google Scholar · View at Scopus
  146. S. K. Sharma, M. Chauhan, and A. K. Narayanapillay, “Span-60 niosomal oral suspension of fluconazole: formulation and in vitro evaluation,” Journal of Pharmaceutical Research and Health Care, vol. 1, no. 2, pp. 142–156, 2009. View at Google Scholar
  147. A. A. H. Sathali and G. Rajalakshmi, “Evaluation of transdermal targeted niosomal drug delivery of terbinafine hydrochloride,” International Journal of PharmTech Research, vol. 2, no. 3, pp. 2081–2089, 2010. View at Google Scholar · View at Scopus
  148. M. H. Dehghan and M. A. Hussain, “Development and evaluation of niosomal delivery system for aceclofenac,” International Journal of Pharmacy & Technology, vol. 2, no. 4, pp. 1028–1045, 2010. View at Google Scholar
  149. J. R. Walve, B. R. Rane, N. A. Gujrathi, S. R. Bakaliwal, and S. P. Pawar, “Proniosomes: a surrogated carrier for improved transdermal drug delivery system,” International Journal of Research in Ayurveda and Pharmacy, vol. 2, no. 3, pp. 743–750, 2011. View at Google Scholar
  150. M. I. Alam, S. Baboota, R. Kohli, J. Ali, and A. Ahuja, “Pharmacodynamic evaluation of proniosomal transdermal therapeutic gel containing celecoxib,” ScienceAsia, vol. 36, no. 4, pp. 305–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. T. Sudhamani, N. Priyadarisini, and M. Radhakrishnan, “Proniosomes—a promising drug carriers,” International Journal of PharmTech Research, vol. 2, no. 2, pp. 1446–1454, 2010. View at Google Scholar · View at Scopus
  152. A. Gupta, S. K. Prajapati, M. Balamurugan, M. Singh, and D. Bhatia, “Design and development of a proniosomal transdermal drug delivery system for captopril,” Tropical Journal of Pharmaceutical Research, vol. 6, no. 2, pp. 687–693, 2007. View at Google Scholar
  153. V. Sankar, K. Ruckmani, S. Durga, and S. Jailani, “Proniosomes as drug carriers,” Pakistan Journal of Pharmaceutical Sciences, vol. 23, no. 1, pp. 103–107, 2010. View at Google Scholar · View at Scopus
  154. A. I. Blazek-Welsh and D. G. Rhodes, “Maltodextrin-based proniosomes,” AAPS PharmSci, vol. 3, no. 1, 8 pages, 2001. View at Google Scholar · View at Scopus
  155. I. A. Alsarra, A. A. Bosela, S. M. Ahmed, and G. M. Mahrous, “Proniosomes as a drug carrier for transdermal delivery of ketorolac,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 59, no. 3, pp. 485–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Goyal, M. Ahuja, and S. K. Sharma, “Preparation and evaluation of anti-inflammatory activity of gugulipid-loaded proniosomal gel,” Acta poloniae pharmaceutica, vol. 68, no. 1, pp. 147–150, 2011. View at Google Scholar · View at Scopus
  157. A. Chandra and P. K. Sharma, “Proniosome based drug delivery system of piroxicam,” African Journal of Pharmacy and Pharmacology, vol. 2, no. 9, pp. 184–190, 2008. View at Google Scholar
  158. J. F. S. Mann, V. A. Ferro, A. B. Mullen et al., “Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin,” Vaccine, vol. 22, no. 19, pp. 2425–2429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. D. Arora, B. Khurana, M. S. Kumar, and S. P. Vyas, “Oral immunization against hepatitis B virus using mannosylated bilosomes,” International Journal of Recent Advances in Pharmaceutical Research, vol. 1, pp. 45–51, 2011. View at Google Scholar
  160. A. Shukla, K. Khatri, P. N. Gupta, A. K. Goyal, A. Mehta, and S. P. Vyas, “Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes),” Journal of Pharmacy and Pharmaceutical Sciences, vol. 11, no. 1, pp. 59–66, 2008. View at Google Scholar · View at Scopus
  161. K. Moribe, W. Limwikrant, K. Higashi, and K. Yamamoto, “Drug nanoparticle formulation using ascorbic acid derivatives,” Journal of Drug Delivery, vol. 2011, Article ID 138929, 9 pages, 2011. View at Google Scholar
  162. I. P. Kaur, M. Kapila, and R. Agrawal, “Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing,” Ageing Research Reviews, vol. 6, no. 4, pp. 271–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. D. Gopinath, D. Ravi, B. R. Rao, S. S. Apte, D. Renuka, and D. Rambhau, “Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications,” International Journal of Pharmaceutics, vol. 271, no. 1-2, pp. 95–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  164. M. S. Umashankar, R. K. Sachdeva, and M. Gulati, “Aquasomes: a promising carrier for peptides and protein delivery,” Nanomedicine, vol. 6, no. 3, pp. 419–426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. Y. Lee, J. B. Chang, H. K. Kim, and T. G. Park, “Stability studies of biodegradable polymersomes prepared by emulsion solvent evaporation method,” Macromolecular Research, vol. 14, no. 3, pp. 359–364, 2006. View at Google Scholar · View at Scopus
  166. S. Saraf, R. Rathi, C. D. Kaur, and S. Saraf, “Colloidosomes an advanced vesicular system in drug delivery,” Asian Journal of Scientific Research, vol. 4, no. 1, pp. 1–15, 2011. View at Publisher · View at Google Scholar · View at Scopus