Table of Contents
ISRN Endocrinology
Volume 2012 (2012), Article ID 478120, 9 pages
http://dx.doi.org/10.5402/2012/478120
Review Article

The Management of Type 2 Diabetic Patients with Hypoglycaemic Agents

Diabetes Ambulatory Care Centre, Department of Medicine and Geriatrics, United Christian Hospital, 130 Hip Wo Street, Kwun Tong, Hong Kong

Received 11 January 2012; Accepted 15 February 2012

Academic Editors: C. Bizzarri and A. Petryk

Copyright © 2012 Man-Wo Tsang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Weyer, C. Bogardus, D. M. Mott, and R. E. Pratley, “The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus,” Journal of Clinical Investigation, vol. 104, no. 6, pp. 787–794, 1999. View at Google Scholar · View at Scopus
  2. S. E. Kahn, “The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes,” Diabetologia, vol. 46, no. 1, pp. 3–19, 2003. View at Google Scholar · View at Scopus
  3. D. LeRoith, “β-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities,” American Journal of Medicine, vol. 113, no. 6, pp. 3S–11S, 2002. View at Google Scholar · View at Scopus
  4. M. Nauck, F. Stockmann, R. Ebert, and W. Creutzfeldt, “Reduced incretin effect in Type 2 (non-insulin-dependent) diabetes,” Diabetologia, vol. 29, no. 1, pp. 46–52, 1986. View at Google Scholar · View at Scopus
  5. D. J. Drucker and M. A. Nauck, “The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes,” The Lancet, vol. 368, no. 9548, pp. 1696–1705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Mitrakou, D. Kelley, M. Mokan et al., “Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance,” The New England Journal of Medicine, vol. 326, no. 1, pp. 22–29, 1992. View at Google Scholar · View at Scopus
  7. R. R. Holman, “Long-term efficacy of sulfonylureas: a United Kingdom Prospective Diabetes Study perspective,” Metabolism, vol. 55, no. 1, pp. S2–S5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Extrapancreatic Effect of Sulfonylurea. International Text Book of Diabetes, John Wiley & Sons, Chichester, UK, 2nd edition, 19.
  9. H. E. Lebovitz, “Oral hypoglycaemic agents for T2DM,” in Joslin Diabetes Mellitus, R. C. Kahn, G. C. Weir, G. L. King, A.M. Jacobson, and A.C. Moses, Eds., chapter 41, p. 693, Lippincott Williams & Wilkins, 14th edition, 2004. View at Google Scholar
  10. J. E. Gerich, “Oral hypoglycemic agents,” The New England Journal of Medicine, vol. 321, no. 18, pp. 1231–1245, 1989. View at Google Scholar · View at Scopus
  11. L. Jackson and L. Robertson, “Sulphonylureas (specifically glibenclamide) and their correct dosage,” South African Medical Journal, vol. 76, no. 6, pp. 286–289, 1989. View at Google Scholar · View at Scopus
  12. S. Stenman, A. Melander, P.-H. Groop et al., “What is the benefit of increasing the sulfonylurea dose?” Annals of Internal Medicine, vol. 118, pp. 169–172, 1993. View at Google Scholar
  13. C. L. Meinert, G. L. Knatterud, T. E. Prout, and C. R. Klimt, “A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results,” Diabetes, vol. 19, pp. 789–830, 1970. View at Google Scholar · View at Scopus
  14. M. Miller and G. L. Knatterud, “A study of the effects of hypoglycemic agents on vascular complications in patients with adult onset diabetes. VI. Supplementary report on nonfatal events in patients treated with tolbutamide,” Diabetes, vol. 25, no. 12, pp. 1129–1153, 1976. View at Google Scholar
  15. S. H. Simpson, S. R. Majumdar, R. T. Tsuyuki, D. T. Eurich, and J. A. Johnson, “Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study,” Canadian Medical Association Journal, vol. 174, no. 2, pp. 169–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. T. K. Schramm, G. H. Gislason, A. Vaag et al., “Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study,” European Heart Journal, vol. 32, no. 15, pp. 1900–1908, 2011. View at Publisher · View at Google Scholar
  17. R. A. DeFronzo, “Pharmacologic therapy for type 2 diabetes mellitus,” Annals of Internal Medicine, vol. 131, no. 4, pp. 281–303, 1999. View at Google Scholar · View at Scopus
  18. V. Rambiritch, P. Naidoo, and N. Butkow, “Dose-response relationships of sulfonylureas: will doubling the dose double the response?” Southern Medical Journal, vol. 100, no. 11, pp. 1132–1136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. R. Holman, S. M. Haffner, J. J. McMurray et al., “Effect of nateglinide on the incidence of diabetes and cardiovascular events,” The New England Journal of Medicine, vol. 362, no. 16, pp. 1463–1476, 2010. View at Publisher · View at Google Scholar
  20. S. Mudaliar and R. R. Henry, “New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers,” Annual Review of Medicine, vol. 52, pp. 239–257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Dormandy, B. Charbonnel, D. J. Eckland et al., “Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial,” The Lancet, vol. 366, no. 9493, pp. 1279–1289, 2005. View at Publisher · View at Google Scholar
  22. A. H. Xiang, R. K. Peters, S. L. Kjos et al., “Effect of pioglitazone on pancreatic β-cell function and diabetes risk in Hispanic women with prior gestational diabetes,” Diabetes, vol. 55, no. 2, pp. 517–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. DeFronzo, D. Tripathy, D. C. Schwenke et al., “Pioglitazone for diabetes prevention in impaired glucose tolerance,” The New England Journal of Medicine, vol. 364, pp. 1104–1115, 2011. View at Google Scholar
  24. S. E. Kahn, S. M. Haffner, M. A. Heise et al., “Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy,” The New England Journal of Medicine, vol. 355, no. 23, pp. 2427–2443, 2006. View at Publisher · View at Google Scholar
  25. D. M. Kendall, “Thiazolidinediones: the case for early use,” Diabetes Care, vol. 29, no. 1, pp. 154–157, 2006. View at Google Scholar · View at Scopus
  26. R. W. Nesto, D. Bell, R. O. Bonow et al., “Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association,” Circulation, vol. 108, no. 23, pp. 2941–2948, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. http://www.ukmicentral.nhs.uk/headline/database/story.asp?NewsID=5956.
  28. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2011/07/WC500109176.pdf.
  29. G. Zhou, R. Myers, Y. Li et al., “Role of AMP-activated protein kinase in mechanism of metformin action,” Journal of Clinical Investigation, vol. 108, no. 8, pp. 1167–1174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Turner, “Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34),” The Lancet, vol. 352, no. 9131, pp. 854–865, 1998. View at Publisher · View at Google Scholar
  31. R. Z. W. Ting, C. C. Szeto, M. H. M. Chan, K. K. Ma, and K. M. Chow, “Risk factors of vitamin B12 deficiency in patients receiving metformin,” Archives of Internal Medicine, vol. 166, no. 18, pp. 1975–1979, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. G. I. Varughese, A. A. Tahrani, and J. H. B. Scarpello, “The long and short of metformin-related vitamin B12 deficiency [3],” Archives of Internal Medicine, vol. 167, no. 7, pp. 729–730, 2007. View at Google Scholar · View at Scopus
  33. S. R. Salpeter, E. Greyber, G. A. Pasternak, and E. E. Salpeter Posthumous, “Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD002967, 2010. View at Google Scholar
  34. J. G. Heaf and W. van Biesen, “Metformin and chronic renal impairment: a story of choices and ugly ducklings,” Clinical Diabetes, vol. 29, no. 3, pp. 97–101, 2011. View at Publisher · View at Google Scholar
  35. A. J. Garber et al., “Maximum dose and GI side effect,” The American Journal of Medicine, vol. 102, p. 491, 1997. View at Google Scholar
  36. L. A. Donnelly, A. D. Morris, and E. R. Pearson, “Adherence in patients transferred from immediate release metformin to a sustained release formulation: a population-based study,” Diabetes, Obesity and Metabolism, vol. 11, no. 4, pp. 338–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. K. Morcos and H. S. Thomsen, “European Society of Urogenital Radiology guidelines on administering contrast media,” Abdominal Imaging, vol. 28, no. 2, pp. 187–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-L. Chiasson, R. G Josse, R. Gomis et al., “Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomized trial,” The Journal of the American Medical Association, vol. 4, no. 486, pp. 494–2003.
  39. C. F. Deacon, “Incretin-based treatment of type 2 diabetes: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors,” Diabetes, Obesity and Metabolism, vol. 9, no. 1, pp. 23–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Hinnen, L. L. Nielsen, A. Waninger, and P. Kushner, “Incretin mimetics and DPP-IV inhibitors: new paradigms for the treatment of type 2 diabetes,” Journal of the American Board of Family Medicine, vol. 19, no. 6, pp. 612–620, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. E. Amori, J. Lau, and A. G. Pittas, “Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis,” Journal of the American Medical Association, vol. 298, no. 2, pp. 194–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. K. R. Richard, J. S. Shelburne, and J. K. Kirk, “Tolerability of dipeptidyl peptidase-4 inhibitors: a review,” Clinical Therapeutics, vol. 33, no. 11, pp. 1609–1629, 2011. View at Google Scholar
  43. L. J. Elsas and L. E. Rosenberg, “Familial renal glycosuria: a genetic reappraisal of hexose transport by kidney and intestine,” Journal of Clinical Investigation, vol. 48, no. 10, pp. 1845–1854, 1969. View at Google Scholar · View at Scopus
  44. B. Komoroski, N. Vachharajani, Y. Feng, L. Li, D. Kornhauser, and M. Pfister, “Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus,” Clinical Pharmacology and Therapeutics, vol. 85, no. 5, pp. 513–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. J. Bailey, J. L Gross, L. Bastone et al., “SGLT2 inhibitors: glucuretic treatment for type 2 diabetes: the renal glucostat,” The Lancet, vol. 375, pp. 2223–2233, 2010. View at Google Scholar
  46. J. F. List, V. Woo, E. Morales, W. Tang, and F. T. Fiedorek, “Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes,” Diabetes Care, vol. 32, no. 4, pp. 650–657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. A. Abdul-Ghani, L. Norton, and R. A. DeFronzo, “Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes,” Endocrine Reviews, vol. 32, no. 4, pp. 515–531, 2011. View at Publisher · View at Google Scholar
  48. American Diabetes Association, “Standards of medical care in diabetes—2010,” Diabetes Care, vol. 33, supplement 1, no. 2, pp. S11–S61, 2010. View at Google Scholar · View at Scopus
  49. H. W. Rodbard, P. S. Jellinger, J. A. Davidson et al., “Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology Consensus Panel on type 2 diabetes mellitus: an algorithm for glycemic control,” Endocrine Practice, vol. 15, no. 6, pp. 540–559, 2009. View at Google Scholar · View at Scopus
  50. J. S. Skyler, R. Bergenstal, R. O. Bonow et al., “Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association,” Diabetes Care, vol. 32, pp. 187–192, 2009. View at Google Scholar
  51. D. M. Nathan, J. B. Buse, M. B. Davidson et al., “Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy,” Diabetes Care, vol. 32, no. 1, pp. 193–203, 2009. View at Google Scholar
  52. H. W. Rodbard, L. Blonde, S. S. Braithwaite et al., “American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus,” Endocrine Practice, vol. 13, supplement 1, pp. 1–68, 2007. View at Google Scholar
  53. Nation Institution of Health and Clinical Excellence, “Type 2 diabetes: newer agents for blood glucose control in type 2 diabetes,” 2009. View at Google Scholar
  54. R. B. Aguilar, “Evaluating treatment algorithms for the management of patients with type 2 diabetes mellitus: a perspective on the definition of treatment success,” Clinical Therapeutics, vol. 33, no. 4, pp. 408–424, 2011. View at Publisher · View at Google Scholar
  55. J. Chalmers and M. E. Cooper, “UKPDS and the legacy effect,” The New England Journal of Medicine, vol. 359, no. 15, pp. 1618–1620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. R. C. Turner, C. A. Cull, V. Frighi, and R. R. Holman, “Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus. Progressive requirement for multiple therapies (UKPDS 49),” Journal of the American Medical Association, vol. 281, no. 21, pp. 2005–2012, 1999. View at Publisher · View at Google Scholar
  57. The Action to Control Cardiovascular Risk in Diabetes Study Group, “Effects of intensive glucose lowering in type 2 diabete,” The New England Journal of Medicine, vol. 358, pp. 2545–2559, 2008. View at Google Scholar
  58. The ADVANCE Collaborative Group, “Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes,” The New England Journal of Medicine, vol. 358, pp. 2560–2572, 2008. View at Google Scholar
  59. C. Xingbao, “Chinese Health Economics 2003; Ling T.,” China Diabetic Journal, 2003.
  60. S. B. Harris, J.-M. Ekoé, Y. Zdanowicz, and S. Webster-Bogaert, “Glycemic control and morbidity in the Canadian primary care setting (results of the diabetes in Canada evaluation study),” Diabetes Research and Clinical Practice, vol. 70, no. 1, pp. 90–97, 2005. View at Publisher · View at Google Scholar
  61. S. H. Saydah, J. Fradkin, and C. C. Cowie, “Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes,” Journal of the American Medical Association, vol. 291, no. 3, pp. 335–342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Liebl, M. Mata, and E. Eschwège, “Evaluation of risk factors for development of complications in Type II diabetes in Europe,” Diabetologia, vol. 45, no. 6, pp. S23–S28, 2002. View at Google Scholar · View at Scopus
  63. L.-M. Chuang, S. T. Tsai, B. Y. Huang, and T. Y. Tai, “The status of diabetes control in Asia—a cross-sectional survey of 24 317 patients with diabetes mellitus in 1998,” Diabetic Medicine, vol. 19, no. 12, pp. 978–985, 2002. View at Publisher · View at Google Scholar
  64. C. E. Koro, S. J. Bowlin, N. Bourgeois, and D. O. Fedder, “Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes: a preliminary report,” Diabetes Care, vol. 27, no. 1, pp. 17–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. S. E. Inzucchi and D. K. McGuire, “New drugs for the treatment of diabetes part II: incretin-based therapy and beyond,” Circulation, vol. 117, no. 4, pp. 574–584, 2008. View at Google Scholar
  66. D. M. Nathan, “Initial management of glycemia in type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 347, pp. 1342–1349, 2002. View at Google Scholar