Table of Contents
ISRN Ecology
Volume 2012 (2012), Article ID 487370, 11 pages
http://dx.doi.org/10.5402/2012/487370
Research Article

Impacts of Cropping Systems and Long-Term Tillage on Soil Microbial Population Levels and Community Composition in Dryland Agricultural Setting

1Soil and Crop Sciences Department, Texas A&M University, College Station, TX 77843-2474, USA
2Programa de Edafología, Colegio de Postgraduados en Ciencias Agrícolas, Campus Montecillo, Carr. México-Texcoco, 56230 Montecillo, MEX, Mexico

Received 28 September 2011; Accepted 18 October 2011

Academic Editor: R. Abed

Copyright © 2012 Justin P. Ng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Buckley and T. M. Schmidt, “The structure of microbial communities in soil and the lasting impact of cultivation,” Microbial Ecology, vol. 42, no. 1, pp. 11–21, 2001. View at Google Scholar · View at Scopus
  2. A. J. Franzluebbers, F. M. Hons, and V. A. Saladino, “Sorghum, wheat and soybean production as affected by long-term tillage, crop sequence and N fertilization,” Plant and Soil, vol. 173, no. 1, pp. 55–65, 1995. View at Google Scholar · View at Scopus
  3. Y. Feng, A. C. Motta, D. W. Reeves, C. H. Burmester, E. van Santen, and J. A. Osborne, “Soil microbial communities under conventional-till and no-till continuous cotton systems,” Soil Biology & Biochemistry, vol. 35, no. 12, pp. 1693–1703, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. D. Frey, T. Elliott, and K. Paustian, “Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients,” Soil Biology & Biochemistry, vol. 31, no. 4, pp. 573–585, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Øvreås and V. Torsvik, “Microbial diversity and community structure in two different agricultural soil communities,” Microbial Ecology, vol. 36, no. 3, pp. 303–315, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Ferreira, D. S. Andrade, L. M. O. Chueire, S. M. Takemura, and M. Hungria, “Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean,” Soil Biology & Biochemistry, vol. 32, no. 5, pp. 627–637, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Upchurch, C. Y. Chiu, K. Everett, G. Dyszynski, D. C. Coleman, and W. B. Whitman, “Differences in the composition and diversity of bacterial communities from agricultural and forest soils,” Soil Biology & Biochemistry, vol. 40, no. 6, pp. 1294–1305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Kabir, I. P. O'Halloran, J. W. Fyles, and C. Hamel, “Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization,” Plant and Soil, vol. 192, no. 2, pp. 285–293, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Mozafar, T. Anken, R. Ruh, and E. Frossard, “Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola,” Agronomy Journal, vol. 92, no. 6, pp. 1117–1124, 2000. View at Google Scholar · View at Scopus
  10. L. Galvez, D. D. Douds, L. E. Drinkwater, and P. Wagoner, “Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize,” Plant and Soil, vol. 228, no. 2, pp. 299–308, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Kabir, “Tillage or no-tillage: impact on mycorrhizae,” Canadian Journal of Plant Science, vol. 85, no. 1, pp. 23–29, 2005. View at Google Scholar · View at Scopus
  12. B. L. Helgason, F. L. Walley, and J. J. Germida, “Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains,” Soil Science Society of America Journal, vol. 73, no. 1, pp. 120–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Z. Lupwayi, W. A. Rice, and G. W. Clayton, “Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation,” Soil Biology & Biochemistry, vol. 30, no. 13, pp. 1733–1741, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Depret, S. Houot, M. R. Allard, M. C. Breuil, R. Nouaïm, and G. Laguerre, “Long-term effects of crop management on Rhizobium leguminosarum biovar viciae populations,” FEMS Microbiology Ecology, vol. 51, no. 1, pp. 87–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Meriles, S. V. Gil, C. Conforto et al., “Soil microbial communities under different soybean cropping systems: characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles,” Soil and Tillage Research, vol. 103, no. 2, pp. 271–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. G. A. Hide and P. J. Read, “Effects of rotation length, fungicide treatment of seed tubers and nematicide on diseases and the quality of potato tubers,” Annals of Applied Biology, vol. 119, no. 1, pp. 77–87, 1991. View at Google Scholar
  17. C. W. Honeycutt, W. M. Clapham, and S. S. Leach, “Crop rotation and N fertilization effects on growth, yield, and disease incidence in potato,” American Potato Journal, vol. 73, no. 2, pp. 45–61, 1996. View at Google Scholar · View at Scopus
  18. B. Govaerts, M. Mezzalama, K. D. Sayre et al., “Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands,” Applied Soil Ecology, vol. 38, no. 3, pp. 197–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Hungria, J. C. Franchini, O. Brandão-Junior, G. Kaschuk, and R. A. Souza, “Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems,” Applied Soil Ecology, vol. 42, no. 3, pp. 288–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Girvan, J. Bullimore, J. N. Pretty, M. A. Osborn, and A. S. Ball, “Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils,” Applied and Environmental Microbiology, vol. 69, no. 3, pp. 1800–1809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. S. Peixoto, H. L. C. Coutinho, B. Madari et al., “Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados,” Soil and Tillage Research, vol. 90, no. 1-2, pp. 16–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Ceja-Navarro, F. N. Rivera-Orduña, L. Patiño-Zúñiga et al., “Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities,” Applied and Environmental Microbiology, vol. 76, no. 11, pp. 3685–3691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Franzluebbers, F. M. Hons, and D. A. Zuberer, “Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping,” Soil and Tillage Research, vol. 34, no. 1, pp. 41–60, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Dou, A. L. Wright, and F. M. Hons, “Sensitivity of labile soil organic carbon to tillage in wheat-based cropping systems,” Soil Science Society of America Journal, vol. 72, no. 5, pp. 1445–1453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Dou, A. L. Wright, and F. M. Hons, “Dissolved and soil organic carbon after long-term conventional and no-tillage sorghum cropping,” Communications in Soil Science and Plant Analysis, vol. 39, no. 5-6, pp. 667–679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. D. C. A. González-Chávez, J. A. Aitkenhead-Peterson, T. J. Gentry, D. A. Zuberer, F. M. Hons, and R. Loeppert, “Soil microbial community, C, N, and P responses to long-term tillage and crop rotation,” Soil and Tillage Research, vol. 106, no. 2, pp. 285–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. V. J. Allison, R. M. Miller, J. D. Jastrow, R. Matamala, and D. R. Zak, “Changes in soil microbial community structure in a tallgrass prairie chronosequence,” Soil Science Society of America Journal, vol. 69, no. 5, pp. 1412–1421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Acosta-Martínez, G. Burow, T. M. Zobeck, and V. G. Allen, “Soil microbial communities and function in alternative systems to continuous cotton,” Soil Science Society of America Journal, vol. 74, no. 4, pp. 1181–1192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Fierer, J. A. Jackson, R. Vilgalys, and R. B. Jackson, “Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays,” Applied and Environmental Microbiology, vol. 71, no. 7, pp. 4117–4120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Boyle, R. R. Yarwood, P. J. Bottomley, and D. D. Myrold, “Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon,” Soil Biology & Biochemistry, vol. 40, no. 2, pp. 443–451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. H. M. Smits, C. Devenoges, K. Szynalski, J. Maillard, and C. Holliger, “Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities,” Journal of Microbiological Methods, vol. 57, no. 3, pp. 369–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. J. Lane, “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematics, E. Stackenbrandt and M. Goodfellow, Eds., pp. 115–157, John Wiley & Sons, Chichester, UK, 1991. View at Google Scholar
  33. X. Qiu, L. Wu, H. Huang et al., “Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning,” Applied and Environmental Microbiology, vol. 67, no. 2, pp. 880–887, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Huber, G. Faulkner, and P. Hugenholtz, “Bellerophon: a program to detect chimeric sequences in multiple sequence alignments,” Bioinformatics, vol. 20, no. 14, pp. 2317–2319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. Cole, B. Chai, R. J. Farris et al., “The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data,” Nucleic Acids Research, vol. 35, supplement 1, pp. D169–D172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Felsenstein, PHYLIP (Phylogeny Inference Package) Version 3.6., Department of Genome Sciences, University of Washington, Seattle, Wash, USA, 2005.
  37. P. D. Schloss, S. L. Westcott, T. Ryabin et al., “Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities,” Applied and Environmental Microbiology, vol. 75, no. 23, pp. 7537–7541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Sheneman, J. Evans, and J. A. Foster, “Clearcut: a fast implementation of relaxed neighbor joining,” Bioinformatics, vol. 22, no. 22, pp. 2823–2824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. A. P. Martin, “Phylogenetic approaches for describing and comparing the diversity of microbial communities,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3673–3682, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, “Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy,” Applied and Environmental Microbiology, vol. 73, no. 16, pp. 5261–5267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. M. White and C. W. Rice, “Tillage effects on microbial and carbon dynamics during plant residue decomposition,” Soil Science Society of America Journal, vol. 73, no. 1, pp. 138–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. T. A. Spedding, C. Hamel, G. R. Mehuys, and C. A. Madramootoo, “Soil microbial dynamics in maize-growing soil under different tillage and residue management systems,” Soil Biology & Biochemistry, vol. 36, no. 3, pp. 499–512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. E. M. Pankratova, “Functioning of Cyanobacteria in soil ecosystems,” Eurasian Soil Science, vol. 39, supplement 1, pp. S118–S127, 2006. View at Google Scholar
  44. N. Karthikeyan, R. Prasanna, L. Nain, and B. D. Kaushik, “Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat,” European Journal of Soil Biology, vol. 43, no. 1, pp. 23–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Bastian, L. Bouziri, B. Nicolardot, and L. Ranjard, “Impact of wheat straw decomposition on successional patterns of soil microbial community structure,” Soil Biology & Biochemistry, vol. 41, no. 2, pp. 262–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. J. Holmes, J. Bowyer, M. P. Holley, M. O'Donoghue, M. Montgomery, and M. R. Gillings, “Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils,” FEMS Microbiology Ecology, vol. 33, no. 2, pp. 111–120, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Connor, J. Sikorski, A. P. Rooney et al., “Ecology of speciation in the genus Bacillus,” Applied and Environmental Microbiology, vol. 76, no. 5, pp. 1349–1358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. R. T. Jones, M. S. Robeson, C. L. Lauber, M. Hamady, R. Knight, and N. Fierer, “A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses,” The ISME Journal, vol. 3, no. 4, pp. 442–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Fierer, M. A. Bradford, and R. B. Jackson, “Toward an ecological classification of soil bacteria,” Ecology, vol. 88, no. 6, pp. 1354–1364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. J. Franzluebbers, F. M. Hons, and D. A. Zuberer, “Long-term changes in soil carbon and nitrogen pools in wheat management systems,” Soil Science Society of America Journal, vol. 58, no. 6, pp. 1639–1645, 1994. View at Google Scholar · View at Scopus
  51. A. J. Franzluebbers, R. L. Haney, C. W. Honeycutt, M. A. Arshad, H. H. Schomberg, and F. M. Hons, “Climatic influences on active fractions of soil organic matter,” Soil Biology & Biochemistry, vol. 33, no. 7-8, pp. 1103–1111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. D. H. Buckley, V. Huangyutitham, T. A. Nelson, A. Rumberger, and J. E. Thies, “Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 4522–4531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. J. G. Kuenen, “Anammox bacteria: from discovery to application,” Nature Reviews Microbiology, vol. 6, no. 4, pp. 320–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Humbert, S. Tarnawski, N. Fromin, M. P. Mallet, M. Aragno, and J. Zopfi, “Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity,” The ISME Journal, vol. 4, no. 3, pp. 450–454, 2010. View at Publisher · View at Google Scholar · View at Scopus