Table of Contents
ISRN Nanomaterials
Volume 2012 (2012), Article ID 504634, 11 pages
http://dx.doi.org/10.5402/2012/504634
Research Article

Production of Nanopowders of Metal Oxides Using Pulsed Electron Beam in Low Pressure Gas

1Institute of Electrophysics, Ural Branch RAS, 106 Amundsen St., Ekaterinburg 620216, Russia
2Ural Federal University, 19 Mira St., Ekaterinburg 620002, Russia

Received 2 April 2012; Accepted 31 May 2012

Academic Editors: A. M. Ali, Y. Dai, A. Kajbafvala, A. Nasibulin, and A. Pyatenko

Copyright © 2012 S. Yu. Sokovnin and V. G. Il'ves. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. A. Kotov, “Electric explosion of wires as a method for preparation of nanopowders,” Journal of Nanoparticle Research, vol. 5, no. 5-6, pp. 539–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. A. Kotov, V. V. Osipov, O. M. Samatov et al., “Properties of powders produced by evaporating CeO2/Gd2O3 targets exposed to pulsed-periodic radiation of a CO2 laser,” Technical Physics, vol. 49, no. 3, pp. 352–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. A. Kotov, O. M. Samatov, M. G. Ivanov et al., “Production and characteristics of composite nanopowders using a fiber ytterbium laser,” Technical Physics, vol. 56, no. 5, pp. 652–655, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Popp, R. Herbig, G. Michel, E. Müller, and C. Oestreich, “Properties of nanocrystalline ceramic powders prepared by laser evaporation and recondensation,” Journal of the European Ceramic Society, vol. 18, no. 9, pp. 1153–1160, 1998. View at Google Scholar · View at Scopus
  5. V. V. Osipov, M. G. Ivanov, V. V. Lisenkov, and V. V. Platonov, “Highly efficient repetitively pulsed electric-discharge industrial CO2 laser,” Quantum Electronics, vol. 32, no. 3, pp. 253–259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. V. V. Osipov, M. G. Ivanov, V. V. Lisenkov, P. B. Smirnov, and A. L. Filatov, “High-efficient pulsed repetitive CO2 laser for technologic use,” in Proceedings of the Digest of Technical Papers-IEEE 11th International Pulsed Power Conference, pp. 1324–1328, July 1997. View at Scopus
  7. M. G. Ivanov, Y. A. Kotov, O. M. Samatov et al., “Production of nanopowders with the help of fiber,” Advances in Science and Technology, vol. 62, pp. 22–26, 2010. View at Publisher · View at Google Scholar
  8. S. N. Fadeev, M. G. Golkovski, A. I. Korchagin et al., “Technological applications of BINP industrial electron accelerators with focused beam extracted into atmosphere,” Radiation Physics and Chemistry, vol. 57, no. 3–6, pp. 653–655, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. J. D. F. Ramsay and R. G. Avery, “Ultrafine oxide powders prepared by electron beam evaporation,” Journal of Materials Science, vol. 9, no. 10, pp. 1689–1695, 1974. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Günther and A. Kumpmann, “Ultrafine oxide powders prepared by inert gas evaporation,” Nanostructured Materials, vol. 1, no. 1, pp. 27–30, 1992. View at Google Scholar · View at Scopus
  11. J. A. Eastman, L. J. Thompson, and D. J. Marshall, “Synthesis of nanophase materials by electron beam evaporation,” Nanostructured Materials, vol. 2, no. 4, pp. 377–382, 1993. View at Google Scholar · View at Scopus
  12. V. F. Popov and Y. N. Gorin, Processes and installations for elektron-ionic technology. High School, Moscow, 1988, http://www.any-book.ru/book/show/id/1270695.
  13. V. G. Il'ves , Y. A. Kotov, S. Y. Sokovnin, and C. K. Rhee, “Use of a pulse electronic beam for production nanopowder oxides,” Nanotechnologies in Russia, vol. 2, pp. 96–101, 2007. View at Google Scholar
  14. V. I. Gushenets, E. M. Oks, G. Y. Yushkov, and N. G. Rempe, “Current status of plasma emission electronics: I. Basic physical processes,” Laser and Particle Beams, vol. 21, no. 2, pp. 123–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. D. Kozlov, K. I. Nikulin, and Y. S. Titkov, Calculation of Parameters and Design of Radiochemical Plants With Electron Accelerators, Atomizdat, Moscow, Russia, 1976, http://books.google.ru/books?id=PTHVGwAACAAJ&hl=ru&source=gbs_navlinks_s.
  16. S. Y. Sokovnin and V. G. Il'ves, “Magnetic properties of oxide nanopowders obtained by pulsed electron beam evaporation,” Technical Physics Letters, vol. 35, no. 11, pp. 1026–1028, 2009. View at Google Scholar
  17. L. N. Orlikov and N. L. Orlikov, “Methods for increasing the efficiency of electron beam extraction through a gas-dynamic window,” Instruments and Experimental Techniques, vol. 45, no. 6, pp. 784–789, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. V. G. Il'ves, A. S. Kamenetskikh, Y. A. Kotov, A. I. Medvedev, and S. Y. Sokovnin, “Production of nanopowders of metal oxides by evaporation in the pulsed electron beam,” Russian Journal of Non-Ferrous Metals, vol. 51, no. 2, pp. 197–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. A. Kotov, V. V. Osipov, M. G. Ivanov et al., “Properties of oxide nanopowders prepared by target evaporation with a pulse-periodic CO2 laser,” Technical Physics, vol. 47, no. 11, pp. 1420–1426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. A. Kotov, V. V. Osipov, M. G. Ivanov et al., “Properties of YSZ and CeGdO nanopowders prepared by target evaporation with a pulse-repetitive CO2-laser,” Reviews on Advanced Materials Science, vol. 5, no. 3, pp. 171–177, 2003, www.ipme.ru/e-journals/RAMS/no_3503/kotov/kotov.pdf. View at Google Scholar · View at Scopus
  21. L. A. Reznitskii and S. E. Filippova, “Inhibitors of the crystallisation of amorphous materials,” Russian Chemical Reviews, vol. 62, pp. 437–446, 1993. View at Publisher · View at Google Scholar
  22. S. V. Gabelkov, R. V. Tarasov, N. S. Poltavtsev, D. S. Logvinkov, and A. G. Mironov, “Phase transformation at crystallization of amorphous zirconia with formation of nanostructure. Questions of a nuclear science and technics,” Problems of Atomic Science and Technology, no. 3, pp. 116–120, 2004, Series: Physics Radiating Damages and Radiating Materials Technology, http://vant.kipt.kharkov.ua/TABFRAME2.html. View at Google Scholar
  23. K. Potzger and S. Zhou, “Non-DMS related ferromagnetism in transition metal doped zinc oxide,” Physica Status Solidi, vol. 246, no. 6, pp. 1147–1167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Sundaresan and C. N. R. Rao, “Ferromagnetism as a universal feature of inorganic nanoparticles,” Nano Today, vol. 4, no. 1, pp. 96–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. P. Larionov, M. G. Zuev, I. M. Strekalov, and S. Y. Sokovnin, “New X-ray contrast means for a basis micro- and nanoparticles tantalate rare-earth elements,” Bulletin of Ural Medical Academic Science, vol. 3, p. 37, 2011, http://vestnikural.ru/. View at Google Scholar
  26. K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, and W. Jiang, “Synthesis of ultrafine γ-Al2O3 powders by pulsed laser ablation,” Journal of Nanoparticle Research, vol. 2, no. 1, pp. 75–83, 2000. View at Google Scholar · View at Scopus
  27. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, “Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides,” Physical Review B, vol. 74, no. 16, Article ID 161306, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Yang, D. Gao, J. Zhang, Z. Shi, and D. Xue, “Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al2O3 nanoparticles,” The Journal of Physical Chemistry C, vol. 115, pp. 16814–16818, 2011. View at Publisher · View at Google Scholar
  29. Y. L. Zheng, C. M. Zhen, X. Q. Wang, L. Ma, X. L. Li, and D. L. Hou, “Room-temperature ferromagnetism observed in alumina films,” Solid State Sciences, vol. 13, no. 8, pp. 1516–1519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Y. Sokovnin, V. G. Il'ves, A. I. Medvedev, A. M. Murzakaev, A. V. Spirina, and M. A. Uimin, “Production of Al2O3-Al(Cu) nanopowders by pulsed electron beam evaporation and their basic characteristics,” in Proceedings of the 10th International Conference on Modification of Materials with Particle Beams and Plasma Flows, Publishing house of the IAO SB RAS, Tomsk, Russia, 2010, http://www.hcei.tsc.ru/conf/2010/cat/2010_cmm_bpnn.html.
  31. V. G. Il'ves, A. I. Medvedev, A. M. Murzakaev, S. Y. Sokovnin et al., “Production nanopowder Al2O3-Al (Cu) evaporation by a pulse electronic beam and their basic characteristics,” Physics and Chemistry of Materials Treatmen, vol. 2, pp. 18–25, 2011, http://www.imet.ac.ru/fxom/. View at Google Scholar
  32. V. G. Il'ves and S. Y. Sokovnin, “Research of magnetic properties nanopowder ZnS received by means of a pulsed electron beam. Interhigh school,” in Proceedings of the Problems of Spectroscopy and Spectrometry, vol. 26, pp. 237–242, Ekaterinburg, Russia, 2010, USTU-UPI.
  33. G. Zhu, S. Zhang, Z. Xu, J. Ma, and X. Shen, “Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties,” Journal of the American Chemical Society, vol. 133, no. 39, pp. 15605–15612, 2011. View at Google Scholar · View at Scopus
  34. Y. Zhang, H. Qin, Y. Bao, and J. Hu, “Study of ferromagnetism in Bi2S3and ZnS nanocrystalline powders,” Physica B & C, vol. 406, pp. 4661–4665, 2011. View at Publisher · View at Google Scholar
  35. C. W. Zhang and S. S. Yan, “First-principles prediction of half-metallic ferromagnetism in Cu-doped ZnS,” Journal of Applied Physics, vol. 107, no. 4, Article ID 043913, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. W. Zhang, S. S. Yan, P. J. Wang, and Z. Zhang, “Density-functional theory study on ferromagnetism in N: ZnS,” Chemical Physics Letters, vol. 496, no. 1–3, pp. 46–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Chen, “First-principles study on the magnetic property of C-doped wurtzite ZnS,” Physics Letters, Section A, vol. 375, no. 24, pp. 2444–2447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. F. J. Owens, L. Gladczuk, R. Szymczak et al., “High temperature magnetic order in zinc sulfide doped with copper,” Journal of Physics and Chemistry of Solids, vol. 72, no. 6, pp. 648–652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Xie, “First-principles study on the magnetism in ZnS-based diluted magnetic semiconductors,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 19, pp. 37–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Fan and J. G. Lu, “Zinc oxide nanostructures: synthesis and properties,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 10, pp. 1561–1573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. V. G. Il'ves and S. Y. Sokovnin, “Production of ZnO and Zn-ZnO nanopowders using evaporation by a pulsed electron beam in low-pressure gas,” Nanotechnologies in Russia, vol. 6, no. 1-2, pp. 137–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Y. Sokovnin, V. G. Il'ves, A. I. Medvedev et al., “Medvedev AI et al (2011) Pulse electronic evaporation nanopowder ZnO-Zn doped copper,” in Proceeding of the 4th All-Russia Conference on Nanomaterials, p. 574, Institute of Metals and Materials Science, Moscow, Russia, http://nano.imet-db.ru/Materials.asp.
  43. V. I. Lysenko, S. Bardakhanov, A. Korchagin et al., “Possibilities of production of nanopowders with high power ELV electron accelerator,” Bulletin of Materials Science, vol. 34, no. 4, pp. 677–681, 2011, http://trove.nla.gov.au/work/157892775. View at Google Scholar · View at Scopus