Table of Contents
ISRN Mathematical Physics
Volume 2012, Article ID 513717, 8 pages
http://dx.doi.org/10.5402/2012/513717
Research Article

Unsteady Rotational Motion of a Slip Spherical Particle in a Viscous Fluid

Department of Mathematics, Faculty of Science, Alexandria University, Alexandria 21511, Egypt

Received 21 September 2011; Accepted 13 October 2011

Academic Editors: A. Stefanov and G. F. Torres del Castillo

Copyright © 2012 E. A. Ashmawy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. B. Basset, A Treatise on Hydrodynamics, Dover Publications, New York, NY, USA, 1961.
  2. G. G. Stokes, “On the theories of internal friction of fluids in motion,” Transactions of the Cambridge Philosophical Society, vol. 8, pp. 287–305, 1845. View at Google Scholar
  3. P. Mazur and D. Bedeaux, “A generalization of Faxén's theorem to nonsteady motion of a sphere through an incompressible fluid in arbitrary flow,” Physica, vol. 76, no. 2, pp. 235–246, 1974. View at Google Scholar · View at Scopus
  4. T. Sano, “Unsteady flow past a sphere at low Reynolds number,” Journal of Fluid Mechanics, vol. 112, pp. 433–441, 1981. View at Google Scholar · View at Scopus
  5. M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Physics of Fluids, vol. 26, no. 4, pp. 883–889, 1983. View at Google Scholar · View at Scopus
  6. C. J. Lawrence and S. Weinbaum, “The force on an axisymmetric body in linearized time dependent motion,” Journal of Fluid Mechanics, vol. 171, pp. 209–218, 1986. View at Google Scholar · View at Scopus
  7. C. J. Lawrence and S. Weinbaum, “The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid,” Journal of Fluid Mechanics, vol. 189, pp. 463–489, 1988. View at Google Scholar · View at Scopus
  8. R. Mei, C. J. Lawrence, and R. J. Adrian, “Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity,” Journal of Fluid Mechanics, vol. 233, pp. 613–631, 1991. View at Google Scholar · View at Scopus
  9. P. M. Lovalenti and J. F. Brady, “The hydrodynamic force on a rigid particle undergoing arbitrary time- dependent motion at small Reynolds number,” Journal of Fluid Mechanics, vol. 256, pp. 561–605, 1993. View at Google Scholar · View at Scopus
  10. J. Feng and D. D. Joseph, “The unsteady motion of solid bodies in creeping flows,” Journal of Fluid Mechanics, vol. 303, pp. 83–102, 1995. View at Google Scholar · View at Scopus
  11. K. B. Ranger, “Time-dependent decay of the motion of a sphere translating and rotating in a viscous liquid,” Quarterly Journal of Mechanics and Applied Mathematics, vol. 49, no. 4, pp. 621–633, 1996. View at Google Scholar · View at Scopus
  12. C. F. M. Coimbra and R. H. Rangel, “General solution of the particle momentum equation in unsteady Stokes flows,” Journal of Fluid Mechanics, vol. 370, pp. 53–72, 1998. View at Google Scholar · View at Scopus
  13. E. S. Asmolov, “Flow past a sphere undergoing unsteady rectilinear motion and unsteady drag at small Reynolds number,” Journal of Fluid Mechanics, vol. 446, pp. 95–119, 2001. View at Google Scholar · View at Scopus
  14. A. Venkatalaxmi, B. S. Padmavathi, and T. Amaranath, “A general solution of unsteady Stokes equations,” Fluid Dynamics Research, vol. 35, no. 3, pp. 229–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Avudainayagam and J. Ramakrisnna, “Slow unsteady motion of a sphere in a viscous incompressible fluid,” Journal of Mathematical and Physical Sciences, vol. 16, pp. 359–365, 1982. View at Google Scholar
  16. C. L . M. H. Navier, “Memoirs de l'Academie,” Royale des Sciences de l'Institut de France, vol. 1, pp. 414–416, 1823. View at Google Scholar
  17. J. Happel and H. Bernner, Low Reynolds Number Hydrodynamics, Noordhoff International Publishing, The Netherlands, 1973.
  18. J. L. Barrat and L. Bocquet, “Large slip effect at a nonwetting fluid-solid interface,” Physical Review Letters, vol. 82, no. 23, pp. 4671–4674, 1999. View at Google Scholar · View at Scopus
  19. R. Pit, H. Hervet, and L. Léger, “Direct experimental evidence of slip in hexadecane: solid interfaces,” Physical Review Letters, vol. 85, no. 5, pp. 980–983, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. D. C. Tretheway, L. Zhu, L. Petzold, and C. D. Meinhart, “Examination of the slip boundary condition by μ-PIV and Lattice Boltzmann simulations,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. 551–556, New Orleans, La, USA, November 2002.
  21. M. E. O'Neill, K. B. Ranger, and H. Brenne, “Slip at the surface of a translating–rotating sphere bisected by a free surface bounding a semi-infinite viscous fluid, removal of the contact-line singularity,” Physics of Fluids, vol. 29, pp. 913–924, 1986. View at Google Scholar
  22. E. E. Michaelides and Z. G. Feng, “The equation of motion of a small viscous sphere in an unsteady flow with interface slip,” International Journal of Multiphase Flow, vol. 21, no. 2, pp. 315–321, 1995. View at Google Scholar · View at Scopus
  23. B. S. Padmavathi, T. Amaranath, and S. D. Nigam, “Stokes flow past a sphere with mixed slip-stick boundary conditions,” Fluid Dynamics Research, vol. 11, no. 5, pp. 229–234, 1993. View at Google Scholar · View at Scopus
  24. D. Palaniappan and P. Daripa, “Exterior Stokes flows with stick-slip boundary conditions,” Zeitschrift für Angewandte Mathematik und Physik, vol. 53, no. 2, pp. 281–307, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. A. M. Albano, D. Bedeaux, and P. Mazur, “On the motion of a sphere with arbitrary slip in a viscous incompressible fluid,” Physica A, vol. 80, no. 1, pp. 89–97, 1975. View at Google Scholar · View at Scopus
  26. S. Datta and S. Deo, “Stokes flow with slip and Kuwabara boundary conditions,” Proceedings of the Indian Academy of Sciences, vol. 112, no. 3, pp. 463–475, 2002. View at Google Scholar · View at Scopus
  27. S. Senchenko and H. J. Keh, “Slipping Stokes flow around a slightly deformed sphere,” Physics of Fluids, vol. 18, no. 8, Article ID 088104, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Tekasakul, R. V. Tompson, and S. K. Loyalka, “A numerical study of two coaxial axi-symmetric particles undergoing steady equal rotation in the slip regime,” Zeitschrift für Angewandte Mathematik und Physik, vol. 50, no. 3, pp. 387–403, 1999. View at Google Scholar · View at Scopus
  29. H. J. Keh and T. C. Lee, “Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity,” Theoretical and Computational Fluid Dynamics, vol. 24, no. 5, pp. 497–510, 2010. View at Publisher · View at Google Scholar · View at Scopus