Table of Contents
ISRN Biomathematics
Volume 2012 (2012), Article ID 516519, 11 pages
http://dx.doi.org/10.5402/2012/516519
Research Article

Potential Impact of Male Circumcision, Condom Use, and Microbicides on the Dynamics of HIV/AIDS

1Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
2Mathematics Department, University of Dar es Salaam, Dar es Salaam, Tanzania

Received 15 May 2012; Accepted 15 August 2012

Academic Editors: B. Foy and M. Santillán

Copyright © 2012 Felix Elias and Jean M. Tchuenche. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO/UNAIDS, “UNAIDS report on the global AIDS epidemic 2010,” UNAIDS/10. 11E JC1958E, 2010.
  2. D. P. Wilson, P. M. Coplan, M. A. Wainberg, and S. M. Blower, “The paradoxical effects of using antiretroviral-based microbicides to control HIV epidemics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 28, pp. 9835–9840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Moghadas, A. B. Gumel, R. G. McLeod, and R. Gordon, “Could condoms stop the AIDS epidemic?” Journal of Theoretical Medicine, vol. 5, no. 3-4, pp. 171–181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Zambia Report, Second Joint Annual Programme Review of National HIV/AIDS/STI/TB Intervention Strategic Plan 2002–2005, Government of Republic of Zambia, 2005.
  5. I. De Vincenzi, “A longitudinal study of human immunodeficiency virus transmission by heterosexual partners,” The New England Journal of Medicine, vol. 331, no. 6, pp. 341–346, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. S. D. Pinkerton and P. R. Abramson, “Effectiveness of condoms in preventing HIV transmission,” Social Science and Medicine, vol. 44, no. 9, pp. 1303–1312, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Auvert, D. Taljaard, E. Lagarde, J. Sobngwi-Tambekou, R. Sitta, and A. Puren, “Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 trial,” PLoS Medicine, vol. 2, no. 11, article e298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. C. Bailey, S. Moses, C. B. Parker et al., “Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial,” The Lancet, vol. 369, no. 9562, pp. 643–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Fink, “A possible explanation for heterosexual male infection with AIDS,” The New England Journal of Medicine, vol. 315, no. 18, p. 1167, 1986. View at Google Scholar · View at Scopus
  10. J. Hutchinson, “On the influence of circumcision on prevention of syphilis,” The Medical Times and Gazette, vol. 1, pp. 542–543, 1885. View at Google Scholar
  11. S. Moses, R. C. Bailey, and A. R. Ronald, “Male circumcision: assessment of health benefits and risks,” Sexually Transmitted Infections, vol. 74, no. 5, pp. 368–373, 1998. View at Google Scholar · View at Scopus
  12. N. Siegfried, M. Muller, J. Deeks et al., “HIV and male circumcision - A systematic review with assessment of the quality of studies,” The Lancet Infectious Diseases, vol. 5, no. 3, pp. 165–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. G. Williams, J. O. Lloyd-Smith, E. Gouws et al., “The potential impact of male circumcision on HIV in sub-Saharan Africa,” PLoS Medicine, vol. 3, no. 7, article e262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Gray, G. Kigozi, D. Serwadda et al., “Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial,” The Lancet, vol. 369, no. 9562, pp. 657–666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Microbicides Trials Network, http://www.mtnstopshiv.org/node/network.
  16. R. Breban, I. McGowan, C. Topaz, E. J. Schwartz, P. Anton, and S. Blower, “Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses,” Mathematical Biosciences and Engineering, vol. 3, no. 3, pp. 459–466, 2006. View at Google Scholar · View at Scopus
  17. C. Watts and P. Vickerman, “The impact of microbicides on HIV and STD transmission: model projections,” AIDS, vol. 15, pp. S43–S44, 2001. View at Google Scholar
  18. R. J. Smith, E. N. Bodine, D. P. Wilson, and S. M. Blower, “Evaluating the potential impact of vaginal microbicides to reduce the risk of acquiring HIV in female sex workers,” AIDS, vol. 19, no. 4, pp. 413–421, 2005. View at Google Scholar · View at Scopus
  19. S. McCormack, “Microbicides: where are we now and what next?” HIV Therapy, vol. 4, no. 6, pp. 615–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Mukandavire, K. Bowa, and W. Garira, “Modelling circumcision and condom use as HIV/AIDS preventive control strategies,” Mathematical and Computer Modelling, vol. 46, no. 11-12, pp. 1353–1372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C. N. Podder, O. Sharomi, A. B. Gumel, and S. Moses, “To cut or not to cut: a modeling approach for assessing the role of male circumcision in HIV control,” Bulletin of Mathematical Biology, vol. 69, no. 8, pp. 2447–2466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. M. Anderson and R. M. May, Infectious Diseases of Humans, Oxford University Press, Oxford, UK, 1991.
  23. C. Castillo-Chavez and S. Busenberg, “On the solution of the two-sex mixing problem,” in Differential Equations Models in Biology, Epidemiology and Ecology, Proceedings, Claremont 1990, S. Busenberg and M. Martelli, Eds., vol. 92 of Lecture Notes in Biomathematics, pp. 80–98, Springer, New York, NY, USA, 1991. View at Google Scholar
  24. V. Hutson and K. Schmitt, “Permanence and the dynamics of biological systems,” Mathematical Biosciences, vol. 111, no. 1, pp. 1–71, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Diekmann, J. A. Heesterbeek, and J. A. Metz, “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,” Journal of Mathematical Biology, vol. 28, no. 4, pp. 365–382, 1990. View at Google Scholar · View at Scopus
  27. R. M. May and R. M. Anderson, “The transmission dynamics of Human Immunodeficiency Virus (HIV),” Philosophical Transactions of the Royal Society of London B, vol. 321, no. 1207, pp. 565–607, 1988. View at Google Scholar
  28. V. Lakshmikantham, S. Leela, and A. Martynyuk, Stability Analysis of Nonlinear Systemsand Basel, Marcel Dekker, New York, NY, USA, 1989.
  29. H. R. Thieme, “Persistence under relaxed point-dissipativity (with application to an endemic model),” SIAM Journal on Mathematical Analysis, vol. 24, no. 2, pp. 405–435, 1993. View at Google Scholar
  30. H. R. Thieme, “Uniform persistence and permanence for non-autonomous semiflows in population biology,” Mathematical Biosciences, vol. 166, no. 2, pp. 173–201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Dushoff, W. Huang, and C. Castillo-Chavez, “Backwards bifurcations and catastrophe in simple models of fatal diseases,” Journal of Mathematical Biology, vol. 36, no. 3, pp. 227–248, 1998. View at Google Scholar · View at Scopus
  32. C. M. Kribs-Zaleta and J. X. Velasco-Hernández, “A simple vaccination model with multiple endemic states,” Mathematical Biosciences, vol. 164, no. 2, pp. 183–201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Mtisi, H. Rwezaura, and J. M. Tchuenche, “A mathematical analysis of malaria and tuberculosis co-dynamics,” Discrete and Continuous Dynamical Systems B, vol. 12, no. 4, pp. 827–864, 2009. View at Publisher · View at Google Scholar · View at Scopus