`ISRN Applied MathematicsVolume 2012, Article ID 518361, 10 pageshttp://dx.doi.org/10.5402/2012/518361`
Research Article

## Extension of Zhou's Method to Neutral Functional-Differential Equation with Proportional Delays

1Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
2Department of Mathematics, Sinnar University, Singa 107, Sudan

Received 30 January 2012; Accepted 19 February 2012

Academic Editors: C.-H. Lien and S. Prudhomme

Copyright © 2012 Sabir Widatalla. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. O. Arino and O. Sidki, “An abstract neutral functional-differential equation arising from a cell population model,” Journal of Mathematical Analysis and Applications, vol. 235, no. 2, pp. 435–453, 1999.
2. A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York, NY, USA, 2003.
3. Z. Jackiewicz and E. Lo, “Numerical solution of neutral functional differential equations by Adams methods in divided difference form,” Journal of Computational and Applied Mathematics, vol. 189, no. 1-2, pp. 592–605, 2006.
4. W. Wang, Y. Zhang, and S. Li, “Stability of continuous Runge-Kutta-type methods for nonlinear neutral delay-differential equations,” Applied Mathematical Modelling, vol. 33, no. 8, pp. 3319–3329, 2009.
5. L. F. Cordero and R. Escalante, “Segmented tau approximation for test neutral functional differential equations,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 725–740, 2007.
6. J. Biazar and B. Ghanbari, “The homotopy perturbation method for solving neutral functional-differential equations with proportional delays,” Journal of King Saud University - Science, vol. 24, pp. 33–37, 2010.
7. W.-S. Wang and S.-F. Li, “On the one-leg $\theta$-methods for solving nonlinear neutral functional differential equations,” Applied Mathematics and Computation, vol. 193, no. 1, pp. 285–301, 2007.
8. W. Wang, T. Qin, and S. Li, “Stability of one-leg $\theta$-methods for nonlinear neutral differential equations with proportional delay,” Applied Mathematics and Computation, vol. 213, no. 1, pp. 177–183, 2009.
9. X. Chen and L. Wang, “The variational iteration method for solving a neutral functional-differential equation with proportional delays,” Computers & Mathematics with Applications, vol. 59, no. 8, pp. 2696–2702, 2010.
10. J. K. Zhou, Differential Transformation and its Application for Electrical Circuit, Huazhong University Press, Wuhan, China, 1986.
11. A. Arikoglu and I. Ozkol, “Solution of differential-difference equations by using differential transform method,” Applied Mathematics and Computation, vol. 181, no. 1, pp. 153–162, 2006.
12. Z. M. Odibat, “Differential transform method for solving Volterra integral equation with separable kernels,” Mathematical and Computer Modelling, vol. 48, no. 7-8, pp. 1144–1149, 2008.
13. M. M. Rashidi, “The modified differential transform method for solving MHD boundary-layer equations,” Computer Physics Communications, vol. 180, no. 11, pp. 2210–2217, 2009.
14. A. S. V. Ravi Kanth and K. Aruna, “Differential transform method for solving linear and non-linear systems of partial differential equations,” Physics Letters A, vol. 372, no. 46, pp. 6896–6898, 2008.
15. A. E. Ebaid, “A reliable aftertreatment for improving the differential transformation method and its application to nonlinear oscillators with fractional nonlinearities,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 1, pp. 528–536, 2011.