Table of Contents
ISRN Cell Biology
Volume 2012 (2012), Article ID 587259, 11 pages
http://dx.doi.org/10.5402/2012/587259
Review Article

Molecular Biomarkers of Response to Antiangiogenic Therapy for Cancer

Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

Received 8 October 2012; Accepted 30 October 2012

Academic Editors: D. Arnoult and I. K. Koutna

Copyright © 2012 Dan G. Duda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Cheng, Y. K. Kang, Z. Chen et al., “Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial,” The Lancet Oncology, vol. 10, no. 1, pp. 25–34, 2011. View at Google Scholar
  2. T. F. Cloughesy, M. D. Prados, P. Wen et al., “non-comparative clinical trial of the effect of bevacizumab alone or in combination with irinotecan (CPT-11) on 6-month progression free survival in recurrent, treatment-refractory glioblastoma,” Journal of Clinical Oncology, vol. 26, abstract 2010, 2008. View at Google Scholar
  3. G. D. Demetri, A. T. van Oosterom, C. R. Garrett et al., “Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial,” The Lancet, vol. 368, no. 9544, pp. 1329–1338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Escudier, T. Eisen, W. M. Stadler et al., “Sorafenib in advanced clear-cell renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, no. 2, pp. 125–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. B. J. Giantonio, P. J. Catalano, N. J. Meropol et al., “Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1539–1544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Llovet, S. Ricci, V. Mazzaferro et al., “Sorafenib in advanced hepatocellular carcinoma,” The New England Journal of Medicine, vol. 359, no. 4, pp. 378–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. J. Motzer, T. E. Hutson, P. Tomczak et al., “Sunitinib versus interferon alfa in metastatic renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, no. 2, pp. 115–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. I. Rini, S. Halabi, J. E. Rosenberg et al., “Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206,” Journal of Clinical Oncology, vol. 28, no. 13, pp. 2137–2143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Sandler, R. Gray, M. C. Perry et al., “Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer,” The New England Journal of Medicine, vol. 355, no. 24, pp. 2542–2550, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. N. Sternberg, I. D. Davis, J. Mardiak et al., “Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial,” Journal of Clinical Oncology, vol. 28, no. 6, pp. 1061–1068, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Van Cutsem, J. Tabernero, R. Lakomy et al., “Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen,” Journal of Clinical Oncology, vol. 30, no. 28, pp. 3499–3506, 2012. View at Google Scholar
  13. S. A. Wells Jr., B. G. Robinson, R. F. Gagel et al., “Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial,” Journal of Clinical Oncology, vol. 30, pp. 134–141, 2012. View at Google Scholar
  14. D. G. Duda, T. T. Batchelor, C. G. Willett, and R. K. Jain, “VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects,” Trends in Molecular Medicine, vol. 13, no. 6, pp. 223–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. G. Duda, R. K. Jain, and C. G. Willett, “Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers,” Journal of Clinical Oncology, vol. 25, no. 26, pp. 4033–4042, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Ellis, “Antiangiogenic therapy at a crossroads: clinical trial results and future directions,” Journal of Clinical Oncology, vol. 21, no. 23, supplement, pp. 281s–283s, 2003. View at Google Scholar · View at Scopus
  17. F. A. L. M. Eskens, “Angiogenesis inhibitors in clinical development; where are we now and where are we going?” British Journal of Cancer, vol. 90, no. 1, pp. 1–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nature Reviews Drug Discovery, vol. 3, no. 5, pp. 391–400, 2004. View at Google Scholar · View at Scopus
  19. A. Grothey and E. Galanis, “Targeting angiogenesis: progress with anti-VEGF treatment with large molecules,” Nature Reviews Clinical Oncology, vol. 6, no. 9, pp. 507–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. V. L. Heath and R. Bicknell, “Anticancer strategies involving the vasculature,” Nature Reviews Clinical Oncology, vol. 6, no. 7, pp. 395–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. K. Jain, “Antiangiogenic therapy for cancer: current and emerging concepts,” Oncology, vol. 19, no. 4, supplement, pp. 7–16, 2005. View at Google Scholar · View at Scopus
  22. R. K. Jain, D. G. Duda, J. W. Clark, and J. S. Loeffler, “Lessons from phase III clinical trials on anti-VEGF therapy for cancer,” Nature Clinical Practice Oncology, vol. 3, no. 1, pp. 24–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. S. Rosen, “VEGF-targeted therapy: therapeutic potential and recent advances,” Oncologist, vol. 10, no. 6, pp. 382–391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Van Cutsem, D. Lambrechts, H. Prenen, R. K. Jain, and P. Carmeliet, “Lessons from the adjuvant bevacizumab trial on colon cancer: what next?” Journal of Clinical Oncology, vol. 29, no. 1, pp. 1–4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. M. W. Verheul and H. M. Pinedo, “Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition,” Nature Reviews Cancer, vol. 7, no. 6, pp. 475–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Fojo and C. Grady, “How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question,” Journal of the National Cancer Institute, vol. 101, no. 15, pp. 1044–1048, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. T. Fojo and D. R. Parkinson, “Biologically targeted cancer therapy and marginal benefits: are we making too much of too little or are we achieving too little by giving too much?” Clinical Cancer Research, vol. 16, no. 24, pp. 5972–5980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Biomarkers Definitions Working Group, “Biomarkers and surrogate endpoints: preferred definitions and conceptual framework,” Clinical pharmacology and therapeutics, vol. 69, no. 3, pp. 89–95, 2001. View at Google Scholar
  29. N. Murukesh, C. Dive, and G. C. Jayson, “Biomarkers of angiogenesis and their role in the development of VEGF inhibitors,” British Journal of Cancer, vol. 102, no. 1, pp. 8–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. K. Jain, D. G. Duda, C. G. Willett et al., “Biomarkers of response and resistance to antiangiogenic therapy,” Nature Reviews Clinical Oncology, vol. 6, no. 6, pp. 327–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. G. Duda, “Targeting tumor angiogenesis: biomarkers of angiogenesis and antiangiogenic therapy in cancer,” Angiogenesis Foundation e-publication, 2011, http://www.angio.org/cme/biom.php.
  32. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. W. E. Naugler and M. Karin, “The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer,” Trends in Molecular Medicine, vol. 14, no. 3, pp. 109–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004. View at Google Scholar · View at Scopus
  36. G. He, G. Y. Yu, V. Temkin et al., “Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation,” Cancer Cell, vol. 17, no. 3, pp. 286–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. J. Park, J. H. Lee, G. Y. Yu et al., “Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression,” Cell, vol. 140, no. 2, pp. 197–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Pikarsky, R. M. Porat, I. Stein et al., “NF-κB functions as a tumour promoter in inflammation-associated cancer,” Nature, vol. 431, no. 7007, pp. 461–466, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Belakavadi and B. P. Salimath, “Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-kB and caspase activated DNase,” Molecular and Cellular Biochemistry, vol. 273, no. 1-2, pp. 57–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. P. Hamsa and G. Kuttan, “GAntiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators,” Drug and Chemical Toxicology, vol. 35, pp. 57–70, 2012. View at Google Scholar
  41. J. Rhode, S. Fogoros, S. Zick et al., “Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells,” BMC Complementary and Alternative Medicine, vol. 7, article 44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Shibata, T. Nagaya, T. Imai, H. Funahashi, A. Nakao, and H. Seo, “Inhibition of NF-κB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells,” Breast Cancer Research and Treatment, vol. 73, no. 3, pp. 237–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Veschini, D. Belloni, C. Foglieni et al., “Hypoxia-inducible transcription factor-1 alpha determines sensitivity of endothelial cells to the proteosome inhibitor bortezomib,” Blood, vol. 109, no. 6, pp. 2565–2570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Wu, C. Huang, X. Li et al., “LRRC4 inhibits glioblastoma cell proliferation, migration, and angiogenesis by downregulating pleiotropic cytokine expression and responses,” Journal of Cellular Physiology, vol. 214, no. 1, pp. 65–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Zhang, X. D. Zhu, H. C. Sun et al., “Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects,” Clinical Cancer Research, vol. 16, no. 13, pp. 3420–3430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. D. Zhao, J. Liu, Z. G. Ren et al., “Maintenance of Sorafenib following combined therapy of three-dimensional conformal radiation therapy/intensity-modulated radiation therapy and transcatheter arterial chemoembolization in patients with locally advanced hepatocellular carcinoma: a phase I/II study,” Radiation Oncology, vol. 5, no. 1, article 12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Carmi, E. Voronov, S. Dotan et al., “The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis,” Journal of Immunology, vol. 183, no. 7, pp. 4705–4714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Sakurai, G. He, A. Matsuzawa et al., “Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis,” Cancer Cell, vol. 14, no. 2, pp. 156–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Germano, P. Allavena, and A. Mantovani, “Cytokines as a key component of cancer-related inflammation,” Cytokine, vol. 43, no. 3, pp. 374–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Kubo, S. Ueno, K. Hiwatashi et al., “Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis,” Annals of Surgical Oncology, vol. 12, no. 10, pp. 800–807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Mizukami, W. S. Jo, E. M. Duerr et al., “Induction of interleukin-8 preserves the angiogenic response in HIF-1α-deficient colon cancer cells,” Nature Medicine, vol. 11, no. 9, pp. 992–997, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. D. J. Brat, A. C. Bellail, and E. G. Van Meir, “The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis,” Neuro-Oncology, vol. 7, no. 2, pp. 122–133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Grunewald, I. Avraham, Y. Dor et al., “VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells,” Cell, vol. 124, no. 1, pp. 175–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Li, E. Gomez, and Z. Zhang, “Immunohistochemical expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 ligand receptor system in hepatocellular carcinoma,” Journal of Experimental and Clinical Cancer Research, vol. 26, no. 4, pp. 527–533, 2007. View at Google Scholar · View at Scopus
  55. T. Mansuroglu, P. Ramadori, J. Dudás et al., “Expression of stem cell factor and its receptor c-Kit during the development of intrahepatic cholangiocarcinoma,” Laboratory Investigation, vol. 89, no. 5, pp. 562–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. A. X. Zhu, D. G. Duda, D. V. Sahani, and R. K. Jain, “HCC and angiogenesis: possible targets and future directions,” Nature Reviews Clinical Oncology, vol. 8, no. 5, pp. 292–301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. B. Chapman, A. Hauschild, C. Robert et al., “Improved survival with vemurafenib in melanoma with BRAF V600E mutation,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2507–2516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. C. S. Karapetis, S. Khambata-Ford, D. J. Jonker et al., “K-ras mutations and benefit from cetuximab in advanced colorectal cancer,” The New England Journal of Medicine, vol. 359, no. 17, pp. 1757–1765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. D. J. Slamon, B. Leyland-Jones, S. Shak et al., “Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2,” The New England Journal of Medicine, vol. 344, no. 11, pp. 783–792, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature, vol. 473, no. 7347, pp. 298–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. H. F. Dvorak, “Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy,” Journal of Clinical Oncology, vol. 20, no. 21, pp. 4368–4380, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Folkman, “Tumor angiogenesis: therapeutic implications,” The New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971. View at Google Scholar · View at Scopus
  64. J. Folkman, “Angiogenesis: an organizing principle for drug discovery?” Nature Reviews Drug Discovery, vol. 6, no. 4, pp. 273–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Carmeliet, V. Ferreira, G. Breier et al., “Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele,” Nature, vol. 380, no. 6573, pp. 435–439, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Ferrara, K. Carver-Moore, H. Chen et al., “Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene,” Nature, vol. 380, no. 6573, pp. 439–442, 1996. View at Publisher · View at Google Scholar · View at Scopus
  68. R. K. Jain, “Molecular regulation of vessel maturation,” Nature Medicine, vol. 9, no. 6, pp. 685–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Mazzone, D. Dettori, R. Leite de Oliveira et al., “Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization,” Cell, vol. 136, no. 5, pp. 839–851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. C. Chappell, S. M. Taylor, N. Ferrara, and V. L. Bautch, “Local guidance of emerging vessel sprouts requires soluble Flt-1,” Developmental Cell, vol. 17, no. 3, pp. 377–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. R. J. Levine, S. E. Maynard, C. Qian et al., “Circulating angiogenic factors and the risk of preeclampsia,” The New England Journal of Medicine, vol. 350, no. 7, pp. 672–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. S. E. Maynard, J. Y. Min, J. Merchan et al., “Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction hypertension, and proteinuria in preeclampsia,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 649–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Tammela, G. Zarkada, E. Wallgard et al., “Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation,” Nature, vol. 454, no. 7204, pp. 656–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Hanahan and L. M. Coussens, “Accessories to the crime: functions of cells recruited to the tumor microenvironment,” Cancer Cell, vol. 21, pp. 309–322, 2012. View at Google Scholar
  75. C. Murdoch, M. Muthana, S. B. Coffelt, and C. E. Lewis, “The role of myeloid cells in the promotion of tumour angiogenesis,” Nature Reviews Cancer, vol. 8, no. 8, pp. 618–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. J. W. Park, R. S. Kerbel, G. J. Kelloff et al., “Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development,” Clinical Cancer Research, vol. 10, no. 11, pp. 3885–3896, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. J. M. Collins, “Imaging and other biomarkers in early clinical studies: one step at a time or re-engineering drug development?” Journal of Clinical Oncology, vol. 23, no. 24, pp. 5417–5419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. S. M. Galbraith, “Antivascular cancer treatments: Imaging biomarkers in pharmaceutical drug development,” British Journal of Radiology, vol. 76, no. 1, pp. S83–S86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. D. W. Miles, S. L. de Haas, L. Dirix et al., “Plasma biomarker analyses in the AVADO phase III randomized study of first-line bevacizumab + docetaxel in patients with human epidermal growth factor receptor (HER) 2-negative metastatic breast cancer,” Cancer Research, vol. 70, abstract P2-16-04, 2010. View at Google Scholar
  80. A. Dowlati, R. Gray, D. H. Johnson, J. H. Schiller, J. Brahmer, and A. B. Sandler, “Prospective correlative assessment of biomarkers in E4599 randomized phase II/III trial of carboplatin and paclitaxel ± bevacizumab in advanced non-small cell lung cancer (NSCLC),” Journal of Clinical Oncology, vol. 24, p. 7027, 2006. View at Google Scholar
  81. A. M. Jubb, H. I. Hurwitz, W. Bai et al., “Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer,” Journal of Clinical Oncology, vol. 24, no. 2, pp. 217–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Bernaards, P. Hegde, D. Chen et al., “Circulating vascular endothelial growth factor (VEGF) as a biomarker for bevacizumab-based therapy in metastatic colorectal, non-small cell lung, and renal cell cancers: analysis of phase III studies,” Journal of Clinical Oncology, vol. 28, supplement, abstract 10519, no. 15, 2010. View at Google Scholar
  83. E. Van Cutsem, S. de Haas, Y. K. Kang et al., “Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial,” Journal of Clinical Oncology, vol. 30, pp. 2119–2127, 2012. View at Google Scholar
  84. G. C. Jayson, S. de Haas, P. Delmar et al., “Evaluation of plasma VEGFA as a potential predictive pan-tumour biomarker for bevacizumab,” European Journal of Cancer, vol. 47, article S96, 2011. View at Google Scholar
  85. N. S. Horowitz, R. T. Penson, D. G. Duda et al., “Safety, efficacy and biomarker exploration in a phase II study of bevacizumab, oxaliplatin and gemcitabine in recurrent Müllerian carcinoma,” Clinical Ovarian Cancer, vol. 4, no. 1, pp. 26–33, 2011. View at Google Scholar
  86. L. Xu, D. G. Duda, E. di Tomaso et al., “Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1α, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer,” Cancer Research, vol. 69, no. 20, pp. 7905–7910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. C. H. Lieu, H. T. Tran, Z. Jiang et al., “The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer,” Journal of Clinical Oncology, vol. 29, supplement, abstract 3533, 2011. View at Google Scholar
  88. D. G. Duda, C. G. Willett, M. Ancukiewicz et al., “Plasma soluble VEGFR-1 is a potential dual biomarker of response and toxicity for bevacizumab with chemoradiation in locally advanced rectal cancer,” Oncologist, vol. 15, no. 6, pp. 577–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. T. T. Batchelor, D. G. Duda, E. di Tomaso et al., “Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 17, pp. 2817–2823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. E. R. Gerstner, K. E. Emblem, A. S. Chi et al., “Effects of cediranib, a VEGF signaling inhibitor, in combination with chemoradiation on tumor blood flow and survival in newly diagnosed glioblastoma,” Journal of Clinical Oncology, vol. 30, supplement, abstract 2009, 2012. View at Google Scholar
  91. J. A. Meyerhardt, M. Ancukiewicz, T. A. Abrams et al., “Phase I study of cetuximab, irinotecan, and vandetanib (ZD6474) as therapy for patients with previously treated metastastic colorectal cancer,” PLoS ONE, vol. 7, Article ID e38231, 2012. View at Google Scholar
  92. S. M. Tolaney, D. G. Duda, Y. Boucher et al., “A phase II study of preoperative (preop) bevacizumab (bev) followed by dose-dense (dd) doxorubicin (A)/cyclophosphamide (C)/paclitaxel (T) in combination with bev in HER2-negative operable breast cancer (BC),” Journal of Clinical Oncology, vol. 30, supplement, abstract 1026, 2012. View at Google Scholar
  93. A. X. Zhu, M. Ancukiewicz, J. G. Supko et al., “Clinical, pharmacodynamic (PD), and pharmacokinetic (PK) evaluation of cediranib in advanced hepatocellular carcinoma (HCC): a phase II study (CTEP, 7147),” Journal of Clinical Oncology, vol. 30, supplement, abstract 4112, 2012. View at Google Scholar
  94. A. X. Zhu, D. V. Sahani, D. G. Duda et al., “Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study,” Journal of Clinical Oncology, vol. 27, no. 18, pp. 3027–3035, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Lambrechts, B. Claes, P. Delmar et al., “VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomised trials,” The Lancet Oncology, vol. 13, no. 7, pp. 724–733, 2012. View at Google Scholar
  96. W. S. Kamoun, C. D. Ley, C. T. Farrar et al., “Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice,” Journal of Clinical Oncology, vol. 27, no. 15, pp. 2542–2552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Winkler, S. V. Kozin, R. T. Tong et al., “Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases,” Cancer Cell, vol. 6, no. 6, pp. 553–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. E. di Tomaso, M. Snuderl, W. S. Kamoun et al., “Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape,” Cancer Research, vol. 71, no. 1, pp. 19–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. A. G. Sorensen, T. T. Batchelor, W. T. Zhang et al., “A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients,” Cancer Research, vol. 69, no. 13, pp. 5296–5300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. E. O. Hanrahan, H. Y. Lin, E. S. Kim et al., “Distinct patterns of cytokine and angiogenic factor modulation and markers of benefit for vandetanib and/or chemotherapy in patients with non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 2, pp. 193–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. T. T. Batchelor, A. G. Sorensen, E. di Tomaso et al., “AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients,” Cancer Cell, vol. 11, no. 1, pp. 83–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. D. G. Duda, S. V. Kozin, N. D. Kirkpatrick, L. Xu, D. Fukumura, and R. K. Jain, “CXCL12 (SDF1α)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?” Clinical Cancer Research, vol. 17, no. 8, pp. 2074–2080, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. C. P. Raut, Y. Boucher, D. G. Duda et al., “Effects of sorafenib on intra-tumoral interstitial fluid pressure and circulating biomarkers in patients with refractory sarcomas (NCI protocol 6948),” PLoS ONE, vol. 7, Article ID e26331, 2012. View at Google Scholar
  104. C. G. Willett, D. G. Duda, E. Di Tomaso et al., “Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study,” Journal of Clinical Oncology, vol. 27, no. 18, pp. 3020–3026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Kopetz, P. M. Hoff, J. S. Morris et al., “Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance,” Journal of Clinical Oncology, vol. 28, no. 3, pp. 453–459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. D. Foernzler, P. Delmar, M. Kockx, J. Cassidy, L. Saltz, and S. Scherer, “Tumor tissue based biomarker analysis in NO16966: a randomized phase III study of first-line bevacizumab in combination with oxaliplatin-based chemotherapy in patients with mCR,” Gastrointestinal Cancers Symposium Proceedings Abstract 374, 2010.
  107. S. X. Yang, S. M. Steinberg, D. Nguyen, T. D. Wu, Z. Modrusan, and S. M. Swain, “Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer,” Clinical Cancer Research, vol. 14, no. 18, pp. 5893–5899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. C. G. Willett, Y. Boucher, D. G. Duda et al., “Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients,” Journal of Clinical Oncology, vol. 23, no. 31, pp. 8136–8139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. S. B. Wedam, J. A. Low, S. X. Yang et al., “Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer,” Journal of Clinical Oncology, vol. 24, no. 5, pp. 769–777, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Goel, D. G. Duda, L. Xu et al., “Normalization of the vasculature for treatment of cancer and other diseases,” Physiological Reviews, vol. 91, no. 3, pp. 1071–1121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. R. K. Jain, “Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy,” Nature Medicine, vol. 7, no. 9, pp. 987–989, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science, vol. 307, no. 5706, pp. 58–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. R. K. Jain, “Taming vessels to treat cancer,” Scientific American, vol. 298, no. 1, pp. 56–63, 2008. View at Google Scholar · View at Scopus
  114. W. L. Ince, A. M. Jubb, S. N. Holden et al., “Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab,” Journal of the National Cancer Institute, vol. 97, no. 13, pp. 981–989, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Gerger, A. El-Khoueiry, W. Zhang et al., “Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer,” Clinical Cancer Research, vol. 17, pp. 5783–5792, 2011. View at Google Scholar
  116. L. lo Giudice, M. Di Salvatore, Astone et al., “Polymorphisms in VEGF, eNOS, COX-2, and IL-8 as predictive markers of response to bevacizumab,” Journal of Clinical Oncology, vol. 28, supplement, abstract e13502, 2010. View at Google Scholar
  117. F. Loupakis, A. Ruzzo, L. Salvatore et al., “Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLFIRI plus bevacizumab in metastatic colorectal cancer,” BMC Cancer, vol. 11, article 247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. A. M. Schultheis, G. Lurje, K. E. Rhodes et al., “Polymorphisms and clinical outcome in recurrent ovarian cancer treated with cyclophosphamide and bevacizumab,” Clinical Cancer Research, vol. 14, no. 22, pp. 7554–7563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. B. P. Schneider, M. Wang, M. Radovich et al., “Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100,” Journal of Clinical Oncology, vol. 26, no. 28, pp. 4672–4678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. W. W. Zhang, J. E. Cortes, H. Yao et al., “Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resistance,” Journal of Clinical Oncology, vol. 27, no. 22, pp. 3642–3649, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. D. G. Duda, M. Ancukiewicz, and R. K. Jain, “Biomarkers of antiangiogenic therapy: how do we move from candidate biomarkers to valid biomarkers?” Journal of Clinical Oncology, vol. 28, no. 2, pp. 183–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. A. X. Zhu, D. G. Duda, D. V. Sahani, and R. K. Jain, “Development of sunitinib in hepatocellular carcinoma: rationale, early clinical experience, and correlative studies,” Cancer Journal, vol. 15, no. 4, pp. 263–268, 2009. View at Publisher · View at Google Scholar · View at Scopus