Table of Contents
ISRN Chemical Engineering
Volume 2012, Article ID 591587, 10 pages
http://dx.doi.org/10.5402/2012/591587
Research Article

Steam Reforming of Glycerol for Hydrogen Production over Catalyst

1Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500 607, India
2Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
3Coal and Gas Technology Division, Indian Institute of Chemical Technology, Hyderabad 500 607, India

Received 5 October 2012; Accepted 24 October 2012

Academic Editors: T. García, L. Jiang, and M. Kostoglou

Copyright © 2012 G. Sadanandam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. BIODIESEL 2020, A Global Market Survey, Feedstock Trends and Forecasts, Emerging Markets Online, 2nd edition, 2008.
  2. J. N. Chheda, G. W. Huber, and J. A. Dumesic, “Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals,” Angewandte Chemie—International Edition, vol. 46, no. 38, pp. 7164–7183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Balaraju, V. Rekha, P. S. Sai Prasad, R. B. N. Prasad, and N. Lingaiah, “Selective hydrogenolysis of glycerol to 1, 2 propanediol over Cu-ZnO catalysts,” Catalysis Letters, vol. 126, no. 1-2, pp. 119–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. H. Zhou, J. N. Beltramini, Y. X. Fan, and G. Q. Lu, “Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals,” Chemical Society Reviews, vol. 37, no. 3, pp. 527–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Byrd, K. K. Pant, and R. B. Gupta, “Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst,” Fuel, vol. 87, no. 13-14, pp. 2956–2960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Adhikari, S. Fernando, and A. Haryanto, “A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin,” Energy and Fuels, vol. 21, no. 4, pp. 2306–2310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Lehnert and P. Claus, “Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol,” Catalysis Communications, vol. 9, no. 15, pp. 2543–2546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Swami and M. A. Abraham, “Integrated catalytic process for conversion of biomass to hydrogen,” Energy and Fuels, vol. 20, no. 6, pp. 2616–2622, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Luo, X. Fu, F. Cao, T. Xiao, and P. P. Edwards, “Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst—effect of catalyst composition and reaction conditions,” Fuel, vol. 87, no. 17-18, pp. 3483–3489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Pompeo, G. F. Santori, and N. N. Nichio, “Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts,” Catalysis Today, vol. 172, pp. 183–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Wen, Y. Xu, H. Ma, Z. Xu, and Z. Tian, “Production of hydrogen by aqueous-phase reforming of glycerol,” International Journal of Hydrogen Energy, vol. 33, no. 22, pp. 6657–6666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Dou, V. Dupont, P. T. Williams, H. Chen, and Y. Ding, “Thermogravimetric kinetics of crude glycerol,” Bioresource Technology, vol. 100, no. 9, pp. 2613–2620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. W. Shabaker, G. W. Huber, and J. A. Dumesic, “Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts,” Journal of Catalysis, vol. 222, no. 1, pp. 180–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Czernik, R. French, C. Feik, and E. Chornet, “Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes,” Industrial and Engineering Chemistry Research, vol. 41, no. 17, pp. 4209–4215, 2002. View at Google Scholar · View at Scopus
  15. S. Adhikari, S. Fernando, and A. Haryanto, “Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts,” Catalysis Today, vol. 129, no. 3-4, pp. 355–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. D. Vaidya and A. E. Rodrigues, “Glycerol reforming for hydrogen production: a review,” Chemical Engineering and Technology, vol. 32, no. 10, pp. 1463–1469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Nichele, M. Signoretto, F. Menegazzo et al., “Glycerol steam reforming for hydrogen production: design of Ni supported catalysts,” Applied Catalysis B, vol. 111-112, pp. 225–232, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Zhang, X. Tang, Y. Li, Y. Xu, and W. Shen, “Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts,” International Journal of Hydrogen Energy, vol. 32, no. 13, pp. 2367–2373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. R. Soares, D. A. Simonetti, and J. A. Dumesic, “Glycerol as a source for fuels and chemicals by low-temperature catalytic processing,” Angewandte Chemie—International Edition, vol. 45, no. 24, pp. 3982–3985, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Chiodo, S. Freni, A. Galvagno, N. Mondello, and F. Frusteri, “Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen,” Applied Catalysis A, vol. 381, no. 1-2, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Adhikari, S. D. Fernando, S. D. F. To, R. M. Bricka, P. H. Steele, and A. Haryanto, “Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts,” Energy and Fuels, vol. 22, no. 2, pp. 1220–1226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Adhikari, S. Fernando, S. R. Gwaltney et al., “A thermodynamic analysis of hydrogen production by steam reforming of glycerol,” International Journal of Hydrogen Energy, vol. 32, no. 14, pp. 2875–2880, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Ashok, S. Naveen Kumar, A. Venugopal, V. Durga Kumari, and M. Subrahmanyam, “COX-free H2 production via catalytic decomposition of CH4 over Ni supported on zeolite catalysts,” Journal of Power Sources, vol. 164, no. 2, pp. 809–814, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. K. Cheng, S. Y. Foo, and A. A. Adesina, “Carbon deposition on bimetallic Co-Ni/Al2O3 catalyst during steam reforming of glycerol,” Catalysis Today, vol. 164, no. 1, pp. 268–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Tomiyama, R. Takahashi, S. Sato, T. Sodesawa, and S. Yoshida, “Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4,” Applied Catalysis A, vol. 241, no. 1-2, pp. 349–361, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Yamauchi, Y. Tsukahara, K. Yamada, T. Sakata, and Y. Wada, “Nucleation and growth of magnetic Ni-Co (Core-Shell) nanoparticles in a one-pot reaction under microwave irradiation,” Chemistry of Materials, vol. 23, no. 1, pp. 75–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Sanles-Sobrido, M. Bañobre-López, V. Salgueiriño et al., “Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth,” Journal of Materials Chemistry, vol. 20, no. 35, pp. 7360–7365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Sakamoto, K. Asazawa, K. Yamada, and H. Tanaka, “Study of Pt-free anode catalysts for anion exchange membrane fuel cells,” Catalysis Today, vol. 164, no. 1, pp. 181–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Eds., Handbook of X-Ray Photoelectron Spectroscopy, PerkineElmer Corporation, 1979.
  30. L. F. Bobadilla, A. álvarez, M. I. Domínguez et al., “Influence of the shape of Ni catalysts in the glycerol steam reforming,” Applied Catalysis B, vol. 123-124, pp. 379–390, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. L. Dieuzeide and N. Amadeo, “Thermodynamic analysis of Glycerol steam reforming,” Chemical Engineering and Technology, vol. 33, no. 1, pp. 89–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. I. N. Buffoni, F. Pompeo, G. F. Santori, and N. N. Nichio, “Nickel catalysts applied in steam reforming of glycerol for hydrogen production,” Catalysis Communications, vol. 10, no. 13, pp. 1656–1660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Slinn, K. Kendall, C. Mallon, and J. Andrews, “Steam reforming of biodiesel by-product to make renewable hydrogen,” Bioresource Technology, vol. 99, no. 13, pp. 5851–5858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Dou, V. Dupont, G. Rickett et al., “Hydrogen production by sorption-enhanced steam reforming of glycerol,” Bioresource Technology, vol. 100, no. 14, pp. 3540–3547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Durga Kumari, K. Venkateswarlu, M. Subrahmanyam et al., “H2 production activities at Indian Institute of Chemical Technology,” in International Conference on Hydrogen Production, The Korean H2 and New Energy Society, Seoul, Korea, June 2012.