Table of Contents
ISRN Organic Chemistry
Volume 2012 (2012), Article ID 595868, 9 pages
http://dx.doi.org/10.5402/2012/595868
Research Article

An Efficient Protocol for the Green and Solvent-Free Synthesis of Azine Derivatives at Room Temperature Using BiCl3-Loaded Montmorillonite K10 as a New Recyclable Heterogeneous Catalyst

Photocatalysis Laboratory, Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India

Received 28 August 2012; Accepted 2 October 2012

Academic Editors: A. Labande, J. Perez-Castells, H. Wakamatsu, and B.-e. Yingyongnarongkul

Copyright © 2012 K. Ravi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Ohki, M. Wada, and K. Y. Akiba, “Bismuth trichloride as a new efficient catalyst in the aldol reaction,” Tetrahedron Letters, vol. 29, no. 37, pp. 4719–4722, 1988. View at Google Scholar · View at Scopus
  2. G. Sabitha, E. Venkata Reddy, J. S. Yadav, K. V. S. Rama Krishna, and A. Ravi Sankar, “Stereoselective synthesis of octahydro-3bH-[1,3]dioxolo[4,5:4′,5′]furo [2′,3′:5,6]pyrano[4,3-b]quinolines via intramolecular hetero-Diels-Alder reactions catalyzed by bismuth(III) chloride,” Tetrahedron Letters, vol. 43, no. 22, pp. 4029–4032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Ollevier and G. Lavie-Compin, “An efficient method for the ring opening of epoxides with aromatic amines catalyzed by bismuth trichloride,” Tetrahedron Letters, vol. 43, no. 44, pp. 7891–7893, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. K. De and R. A. Gibbs, “Bismuth(III) chloride-catalyzed direct deoxygenative allylation of substituted benzylic alcohols with allyltrimethylsilane,” Tetrahedron Letters, vol. 46, no. 48, pp. 8345–8350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Li, H. Y. Zeng, and H. W. Shao, “Bismuth(III) chloride-catalyzed one-pot Mannich reaction: three-component synthesis of β-amino carbonyl compounds,” Tetrahedron Letters, vol. 50, no. 49, pp. 6858–6860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. D. Nikalje, P. Phukan, and A. Sudalai, “Recent advances in clay-catalyzed organic transformations,” Organic Preparations and Procedures International, vol. 32, no. 1, pp. 1–40, 2000. View at Google Scholar · View at Scopus
  7. T. Cseri, S. Békássy, F. Figueras, E. Cseke, L. C. de Menorval, and R. Dutartre, “Characterization of clay-based K catalysts and their application in Friedel-Crafts alkylation of aromatics,” Applied Catalysis A, vol. 132, no. 1, pp. 141–155, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. B. M. Choudary, N. S. Chowdari, M. L. Kantam, and R. Kannan, “Fe(III) exchanged montmorillonite: a mild and ecofriendly catalyst for sulfonylation of aromatics,” Tetrahedron Letters, vol. 40, no. 14, pp. 2859–2862, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. T. K. Huang, R. Wang, L. Shi, and X. X. Lu, “Montmorillonite K-10: an efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water,” Catalysis Communications, vol. 9, no. 6, pp. 1143–1147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Joseph, G. V. Shanbhag, D. P. Sawant, and S. B. Halligudi, “Chemoselective anti-Markovnikov hydroamination of α,β-ethylenic compounds with amines using montmorillonite clay,” Journal of Molecular Catalysis A, vol. 250, no. 1-2, pp. 210–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. F. R. P. Crisóstomo, R. Carrillo, T. Martín, and V. S. Martín, “Montmorillonite K-10 as a mild acid for the Nicholas reaction,” Tetrahedron Letters, vol. 46, no. 16, pp. 2829–2832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kawabata, T. Mizugaki, K. Ebitani, and K. Kaneda, “Highly efficient esterification of carboxylic acids with alcohols by montmorillonite-enwrapped titanium as a heterogeneous acid catalyst,” Tetrahedron Letters, vol. 44, no. 51, pp. 9205–9208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. M. Mohareb, J. Z. Ho, and F. O. Alfarouk, “Synthesis of thiophenes, azoles and azines with potential biological activity by employing the versatile heterocyclic precursor N- benzoycyanoacetylhydrazine,” Journal of the Chinese Chemical Society, vol. 54, no. 4, pp. 1053–1066, 2007. View at Google Scholar · View at Scopus
  14. R. Manikannan, R. Venkatesan, S. Muthusubramanian, P. Yogeeswari, and D. Sriram, “Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 23, pp. 6920–6924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. M. Kolb, D. H. Hua, and W. L. Duax, “Stereochemistry of long-lasting opiates. 2. δ-Selective opiate antagonists and their agonist analogues,” Journal of Organic Chemistry, vol. 52, no. 14, pp. 3003–3010, 1987. View at Google Scholar · View at Scopus
  16. V. M. Kolb and D. H. Hua, “Syn-anti isomerism in the opiate hydrazones and azines derived from naloxone, naltrexone, and oxymorphone,” Journal of Organic Chemistry, vol. 49, no. 20, pp. 3824–3828, 1984. View at Google Scholar · View at Scopus
  17. A. I. Vogel, Text book of Practical Organic Chemistry, ELBS and Longman, London, UK, 4th edition, 1978.
  18. H. M. Nanjundaswamy and M. A. Pasha, “Selective protection of carbonyl compounds as azines and their facile regeneration,” Synthetic Communications, vol. 36, no. 21, pp. 3161–3165, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. N. Shah and N. K. Chudgar, “Thermolysis of semicarbazones to the corresponding azines through reactive N-substituted isocyanate intermediates,” Molecules, vol. 5, no. 4, pp. 657–664, 2000. View at Google Scholar · View at Scopus
  20. H. Eshghi and M. Hosseini, “Selective and convenient protection of aldehydes as azines under solvent-free conditions,” Journal of the Chinese Chemical Society, vol. 55, no. 3, pp. 636–638, 2008. View at Google Scholar · View at Scopus
  21. J. Safari and S. Gandomi-Ravandi, “Highly efficient practical procedure for the synthesis of azine derivatives under solvent-free conditions,” Synthetic Communications, vol. 41, no. 5, pp. 645–651, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Samai, G. Chandra Nandi, R. Kumar, and M. S. Singh, “Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno[1,2-b]pyridines,” Tetrahedron Letters, vol. 50, no. 50, pp. 7096–7098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Moon, Y. Choi, Y. M. Lee et al., “An expeditious and environmentally benign preparation of aryl halides from aryl amines by solvent-free grinding,” Tetrahedron Letters, vol. 51, no. 51, pp. 6769–6771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Krishnakumar and M. Swaminathan, “An expeditious and solvent free synthesis of azine derivatives using sulfated anatase-titania as a novel solid acid catalyst,” Catalysis Communications, vol. 16, no. 1, pp. 50–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Virkutyte and R. S. Varma, “Photoinduced catalytic adsorption of model contaminants on Bi/Cu pillared montmorillonite in the visible light range,” Separation and Purification Technology, vol. 78, no. 2, pp. 201–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Abo-Naf, R. L. Elwan, and G. M. Elkomy, “Crystallization of bismuth oxide nano-crystallites in a SiO2-PbO-Bi2O3 glass matrix,” Journal of Non-Crystalline Solids, vol. 358, no. 5, pp. 964–968, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Krishnakumar, B. Subash, and M. Swaminathan, “AgBr-ZnO—an efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light,” Separation and Purification Technology, vol. 85, pp. 35–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Krishnakumar, R. Velmurugan, and M. Swaminathan, “TiO2-SO42- as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation,” Catalysis Communications, vol. 12, no. 5, pp. 375–379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Krishnakumar and M. Swaminathan, “Solvent free synthesis of quinoxalines, dipyridophenazines and chalcones under microwave irradiation with sulfated Degussa titania as a novel solid acid catalyst,” Journal of Molecular Catalysis A, vol. 350, no. 1-2, pp. 16–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Krishnakumar and M. Swaminathan, “An expeditious and solvent free synthesis of azine derivatives using sulfated anatase-titania as a novel solid acid catalyst,” Catalysis Communications, vol. 16, no. 1, pp. 50–55, 2011. View at Publisher · View at Google Scholar · View at Scopus