Table of Contents
ISRN Polymer Science
Volume 2012 (2012), Article ID 603108, 6 pages
http://dx.doi.org/10.5402/2012/603108
Research Article

A Confirmed Model to Polymer Core-Shell Structured Nanofibers Deposited via Coaxial Electrospinning

Unité de Physique des Dispositifs à Semi-Conducteurs, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisia

Received 20 August 2012; Accepted 12 September 2012

Academic Editors: B. Hazer and A. V. Popov

Copyright © 2012 K. Boubaker. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Carlone, G. S. Palazzo, and R. Pasquino, “Modelling of film casting manufacturing process longitudinal and transverse stretching,” Mathematical and Computer Modelling, vol. 42, no. 11-12, pp. 1325–1338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. I. I. Kudish, “Modeling of lubricant performance in Kurt Orbahn tests for viscosity modifiers based on star polymers,” Mathematical and Computer Modelling, vol. 46, no. 5-6, pp. 632–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Fang, R. P. Gilbert, and X. G. Liu, “A squeeze flow problem with a Navier slip condition,” Mathematical and Computer Modelling, vol. 52, no. 1-2, pp. 268–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Danno, H. Matsumoto, M. Nasir et al., “Fine structure of PVDF nanofiber fabricated by electrospray deposition,” Journal of Polymer Science B, vol. 46, no. 6, pp. 558–563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Li, C. Liu, Y. Zhou et al., “Enhanced photocatalytic activity in anatase/TiO2(B) core-shell nanofiber,” Journal of Physical Chemistry C, vol. 112, no. 51, pp. 20539–20545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, “A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,” Biomaterials, vol. 24, no. 12, pp. 2077–2082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin, “Electrospinning of nanofiber fibrinogen structures,” Nano Letters, vol. 3, no. 2, pp. 213–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, “Electrospinning of collagen nanofibers,” Biomacromolecules, vol. 3, no. 2, pp. 232–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, “Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,” Biomaterials, vol. 25, no. 5, pp. 877–886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. D. Pierschbacher and E. Ruoslahti, “Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule,” Nature, vol. 309, no. 5963, pp. 30–33, 1984. View at Google Scholar · View at Scopus
  11. M. Hakkarainen, “Aliphatic polyesters: abiotic and biotic degradation and degradation products,” Advances in Polymer Science, vol. 157, pp. 113–138, 2002. View at Google Scholar · View at Scopus
  12. J. H. Lane, “On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestrial experiment,” The American Journal of Science and Arts, vol. 50, pp. 57–74, 1870. View at Google Scholar
  13. R. Emden, Gaskugeln, Teubner, Leipzig, Germany, 1907.
  14. S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications, New York, NY, USA, 1957.
  15. H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Publications, New York, NY, USA, 1962.
  16. O. W. Richardson, The Emission of Electricity from Hot Bodies, Longmans, Green and Company, London, UK, 2nd edition, 1921.
  17. D. C. Biles, M. P. Robinson, and J. S. Spraker, “A generalization of the Lane-Emden equation,” Journal of Mathematical Analysis and Applications, vol. 273, no. 2, pp. 654–666, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Bluman, A. F. Cheviakov, and M. Senthilvelan, “Solution and asymptotic/blow-up behaviour of a class of nonlinear dissipative systems,” Journal of Mathematical Analysis and Applications, vol. 339, no. 2, pp. 1199–1209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover, New York, NY, USA, 2nd edition, 2000.
  20. J. Shen, “Stable and efficient spectral methods in unbounded domains using Laguerre functions,” SIAM Journal on Numerical Analysis, vol. 38, no. 4, pp. 1113–1133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Maday, B. Pernaud-Thomas, and H. Vandeven, “Reappraisal of Laguerre type spectral methods,” Office National D'Etudes et de Recherches Aerospatiales, vol. 6, pp. 13–35, 1985. View at Google Scholar
  22. H. I. Siyyam, “Laguerre Tau methods for solving higher-order ordinary differential equations,” Journal of Computational Analysis and Applications, vol. 3, no. 2, pp. 173–182, 2001. View at Google Scholar · View at Scopus
  23. B. Y. Guo, “Jacobi spectral approximations to differential equations on the half line,” Journal of Computational Mathematics, vol. 18, no. 1, pp. 95–112, 2000. View at Google Scholar · View at Scopus
  24. A. F. Spivak, Y. A. Dzenis, and D. H. Reneker, “Model of steady state jet in the electrospinning process,” Mechanics Research Communications, vol. 27, no. 1, pp. 37–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. A. F. Spivak and Y. A. Dzenis, “Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field,” Applied Physics Letters, vol. 73, no. 21, pp. 3067–3069, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Barry and A. Hennessy, “Meixner-type results for Riordan arrays and associated integer sequences,” Journal of Integer Sequences, vol. 13, no. 9, pp. 1–34, 2010. View at Google Scholar · View at Scopus
  27. M. Agida and A. S. Kumar, “A Boubaker polynomials expansion scheme solution to random Love's equation in the case of a rational Kernel,” Electronic Journal of Theoretical Physics, vol. 7, no. 24, pp. 319–326, 2010. View at Google Scholar · View at Scopus
  28. A. Yildirim, S. T. Mohyud-Din, and D. H. Zhang, “Analytical solutions to the pulsed Klein-Gordon equation using Modified Variational Iteration Method (MVIM) and Boubaker Polynomials Expansion Scheme (BPES),” Computers and Mathematics with Applications, vol. 59, no. 8, pp. 2473–2477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Slama, J. Bessrour, M. Bouhafs, and K. B. B. Mahmoud, “Numerical distribution of temperature as a guide to investigation of melting point maximal front spatial evolution during resistance spot welding using boubaker polynomials,” Numerical Heat Transfer A, vol. 55, no. 4, pp. 401–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Slama, M. Bouhafs, and K. B. Ben Mahmoud, “A boubaker polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding,” International Journal of Heat and Technology, vol. 26, no. 2, pp. 141–146, 2008. View at Google Scholar · View at Scopus
  31. S. A. H. A. E. Tabatabaei, T. Zhao, O. B. Awojoyogbe, and F. O. Moses, “Cut-off cooling velocity profiling inside a keyhole model using the Boubaker polynomials expansion scheme,” Heat and Mass Transfer, vol. 45, no. 10, pp. 1247–1251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Fridjine and M. Amlouk, “A new parameter: an abacus for optimizing PVT hybrid solar device functional materials using the boubaker polynomials expansion scheme,” Modern Physics Letters B, vol. 23, no. 17, pp. 2179–2191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Belhadj, J. Bessrour, M. Bouhafs, and L. Barrallier, “Experimental and theoretical cooling velocity profile inside laser welded metals using keyhole approximation and Boubaker polynomials expansion,” Journal of Thermal Analysis and Calorimetry, vol. 97, no. 3, pp. 911–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. S. Kumar, “An analytical solution to applied mathematics-related Love's equation using the Boubaker polynomials expansion scheme,” Journal of the Franklin Institute, vol. 347, no. 9, pp. 1755–1761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Milgram, “The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem,” Journal of Theoretical Biology, vol. 271, no. 1, pp. 157–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. A. Theron, E. Zussman, and A. L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions,” Polymer, vol. 45, no. 6, pp. 2017–2030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J.-H. He, Y. Wu, and W.-W. Zuo, “Critical length of straight jet in electrospinning,” Polymer, vol. 46, no. 26, pp. 12637–12640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-H. He and H.-M. Liu, “Variational approach to nonlinear problems and a review on mathematical model of electrospinning,” Nonlinear Analysis: Theory, Methods and Applications, vol. 63, no. 5–7, pp. e919–e929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Xu, Y. Wu, and Y. Nawaz, “Numerical study of magnetic electrospinning processes,” Computers and Mathematics with Applications, vol. 61, no. 8, pp. 2116–2119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, “Effects of parameters on nanofiber diameter determined from electrospinning model,” Polymer, vol. 48, no. 23, pp. 6913–6922, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Zhmayev, D. Cho, and Y. L. Joo, “Nanofibers from gas-assisted polymer melt electrospinning,” Polymer, vol. 51, no. 18, pp. 4140–4144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, “Experimental characterization of electrospinning: the electrically forced jet and instabilities,” Polymer, vol. 42, no. 25, pp. 9955–9967, 2001. View at Google Scholar · View at Scopus