Table of Contents
ISRN Nanotechnology
Volume 2012 (2012), Article ID 608756, 6 pages
http://dx.doi.org/10.5402/2012/608756
Research Article

High-Purity Nanopowders for Laser Applications

nGimat LLC., 2436 Over Drive, Suite B, Lexington, KY 40511, USA

Received 26 January 2012; Accepted 28 February 2012

Academic Editors: C.-C. Chen, A. N. Obraztsov, and A. Patra

Copyright © 2012 Deepak Ganta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nature Photonics, vol. 2, no. 12, pp. 721–727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Ikesue, K. Kamata, and K. Yoshida, “Effects of neodymium concentration on optical characteristics of polycrystalline Nd:YaG laser materials,” Journal of the American Ceramic Society, vol. 79, no. 7, pp. 1921–1926, 1996. View at Google Scholar · View at Scopus
  3. T. Sekino and Y. Sogabe, “Progress in the YAG crystal growth technique for solid state lasers,” The Review of Laser Engineering, vol. 21, pp. 827–829, 1995. View at Google Scholar
  4. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annual Review of Materials Research, vol. 36, pp. 397–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Optical Materials, vol. 29, no. 10, pp. 1258–1262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” Journal of Crystal Growth, vol. 237-239, no. 1–4, pp. 879–883, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Contag, S. Erhard, and A. Giesen, “Calculation of optimum design parameters for Yb:YAG thin disk lasers,” OSA Trends in Optics and Photonics, vol. 34, pp. 124–126, 2001. View at Google Scholar
  8. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Optics Express, vol. 12, no. 14, pp. 3125–3130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. V. Kamat, K. T. Pillai, V. N. Vaidya, and D. D. Sood, “Synthesis of yttrium aluminium garnet by the gel entrapment technique using hexamine,” Materials Chemistry and Physics, vol. 46, no. 1, pp. 67–71, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. C. Kang, Y. S. Chung, and S. B. Park, “Preparation of YAG:europium red phosphors by spray pyrolysis using a filter-expansion aerosol generator,” Journal of the American Ceramic Society, vol. 82, no. 8, pp. 2056–2060, 1999. View at Google Scholar · View at Scopus
  11. M. Nyman, J. Caruso, M. J. Hampden-Smith, and T. T. Kodas, “Comparison of solid-state and spray-pyrolysis synthesis of yttrium aluminate powders,” Journal of the American Ceramic Society, vol. 80, no. 5, pp. 1231–1238, 1997. View at Google Scholar · View at Scopus
  12. W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” American Ceramic Society Bulletin, vol. 67, no. 10, pp. 1673–1678, 1988. View at Google Scholar · View at Scopus
  13. D. F. K. Hennings, C. Metzmacher, and B. S. Schreinemacher, “Defect chemistry and microstructure of hydrothermal barium titanate,” Journal of the American Ceramic Society, vol. 84, no. 1, pp. 179–182, 2001. View at Google Scholar · View at Scopus
  14. A. T. Hunt, W. B. Carter, and J. K. Cochran Jr., “Combustion chemical vapor deposition: a novel thin-film deposition technique,” Applied Physics Letters, vol. 63, no. 2, pp. 266–268, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. A. T. Hunt, J.K. Cochran, and W.B. Carter, “Combustion chemical vapor deposition of films and coatings,” U.S. Patent Number 5,652,021, 1997. View at Google Scholar
  16. R. Maric, S. Seward, P. W. Faguy, and M. Oljaca, “Electrolyte materials for intermediate temperature fuel cells produced via combustion chemical vapor condensation,” Electrochemical and Solid-State Letters, vol. 6, no. 5, pp. A91–A95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Yariv, Quantum Electronics, Wiley, New York, NY, USA, 3rd edition, 1989.
  18. J. E. Geusic, H. M. Marcos, and L. G. van Uitert, “Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Applied Physics Letters, vol. 4, no. 10, pp. 182–184, 1964. View at Publisher · View at Google Scholar · View at Scopus