Table of Contents
ISRN Chromatography
Volume 2012 (2012), Article ID 609095, 7 pages
http://dx.doi.org/10.5402/2012/609095
Research Article

Improved Chromatographic Methods for Determination of Bioactive Compounds from Aloe vera Leaves

1Departement de Génie Chimique, Faculté des Sciences et Techniques, Université Abdelmalek Essâadi, P.O. Box 416, Tanger, Morocco
2Departamento de Química Analítica, Facultad de Ciencias, Universidad de Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), P.O. Box 40, 11510 Puerto Real, Spain

Received 7 August 2012; Accepted 24 September 2012

Academic Editors: G. K. Jayaprakasha and A. Vazquez

Copyright © 2012 L. Azaroual et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Steenkamp and M. J. Stewart, “Medicinal applications and toxicological activities of Aloe products,” Pharmaceutical Biology, vol. 45, no. 5, pp. 411–420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Saccù, P. Bogoni, and G. Procida, “Aloe exudate: characterization by reversed phase HPLC and headspace GC-MS,” Journal of Agricultural and Food Chemistry, vol. 49, no. 10, pp. 4526–4530, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Y. Esmat, C. Tomasetto, and M. C. Rio, “Cytotoxicity of a natural anthraquinone (Aloin) against human breast cancer cell lines with and without ErbB-2-topoisomerase IIa coamplification,” Cancer Biology and Therapy, vol. 5, no. 1, pp. 97–103, 2006. View at Google Scholar · View at Scopus
  4. L. Kambizi, N. Sultana, and A. J. Afolayan, “Bioactive compounds isolated from Aloe ferox: a plant traditionally used for the treatment of sexually transmitted infections in the Eastern Cape, South Africa,” Pharmaceutical Biology, vol. 42, no. 8, pp. 636–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Tian and Y. Hua, “Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe-emodin on DNA,” Food Chemistry, vol. 91, no. 3, pp. 413–418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Hu, J. Xu, and Q. Hu, “Evaluation of antioxidant potential of Aloe vera (Aloe barbadensis Miller) extracts,” Journal of Agricultural and Food Chemistry, vol. 51, no. 26, pp. 7788–7791, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Okamura, M. Asai, N. Hine, and A. Yagi, “High-performance liquid chromatographic determination of phenolic compounds in Aloe species,” Journal of Chromatography A, vol. 746, no. 2, pp. 225–231, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. ElSohly, W. Gul, B. Avula, and I. A. Khan, “Determination of the anthraquinones aloe-emodin and aloin-a by liquid chromatography with mass spectrometric and diode array detection,” Journal of AOAC International, vol. 90, no. 1, pp. 28–42, 2007. View at Google Scholar · View at Scopus
  9. W. Rebecca, O. Kayser, H. Hagels, K. H. Zessin, M. Madundo, and N. Gamba, “The phytochemical profile and identification of main phenolic compounds from the leaf exudate of Aloe secundiflora by high-performance liquid chromatography-mass spectroscopy,” Phytochemical Analysis, vol. 14, no. 2, pp. 83–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. K. Park, J. H. Park, N. Y. Kim et al., “Analysis of 13 phenolic compounds in aloe species by high performance liquid chromatography,” Phytochemical Analysis, vol. 9, pp. 186–191, 1998. View at Google Scholar
  11. M. Zahn, T. Trinh, M. L. Jeong et al., “A reversed-phase high-performance liquid chromatographic method for the determination of Aloesin, Aloeresin A and anthraquinone in Aloe ferox,” Phytochemical Analysis, vol. 19, no. 2, pp. 122–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Wu and R. Thompson, “Fast and efficient separations using reversed phase liquid chromatography,” Journal of Liquid Chromatography and Related Technologies, vol. 29, no. 7-8, pp. 949–988, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Wu and A. M. Clausen, “Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations,” Journal of Separation Science, vol. 30, no. 8, pp. 1167–1182, 2007. View at Publisher · View at Google Scholar · View at Scopus