Abstract

We consider a nonlinear hyperbolic partial differential equation in a general form. Using a Gronwall-type lemma we prove results on the Ulam-Hyers stability and the generalised Ulam-Hyers-Rassias stability of this equation.

1. Introduction

Results on Ulam stability for the functional equations are well known (see, e.g., [14]). In this paper we consider different types of Ulam stability of a nonlinear hyperbolic partial differential equation. Following results from Rus [5] and Rus and Lungu [6], we present some Ulam-Hyers and Ulam-Hyers-Rassias stabilities for the following equation: 𝜕2𝑢𝜕𝑥𝜕𝑦(𝑥,𝑦)=𝑓𝑥,𝑦,𝑢(𝑥,𝑦),𝜕𝑢𝜕𝑥(𝑥,𝑦),𝜕𝑢𝜕𝑦(𝑥,𝑦),0𝑥<𝑎,0𝑦<𝑏,(1.1) where 𝑓𝐶([0,𝑎)×[0,𝑏)×𝔹3,𝔹) and (𝔹,||) is a real or complex Banach space.

2. Preliminaries

In this section we present some definitions and results on different types of Ulam stability for a hyperbolic partial differential equation. We also present a Gronwall type lemma, which will be useful in the proof of the main results.

Let 𝑎,𝑏(0,], 𝜀>0, 𝜑𝐶([0,𝑎)×[0,𝑏),+) and (𝔹,||) be a real or complex Banach space.

We consider the following hyperbolic partial differential equation:𝜕2𝑢𝜕𝑥𝜕𝑦(𝑥,𝑦)=𝑓𝑥,𝑦,𝑢(𝑥,𝑦),𝜕𝑢𝜕𝑥(𝑥,𝑦),𝜕𝑢𝜕𝑦(𝑥,𝑦),0𝑥<𝑎,0𝑦<𝑏,(2.1) where 𝑓𝐶([0,𝑎)×[0,𝑏)×𝔹3,𝔹).

We also consider the following inequalities:||||𝜕2𝑣𝜕𝑥𝜕𝑦(𝑥,𝑦)𝑓𝑥,𝑦,𝑣(𝑥,𝑦),𝜕𝑣𝜕𝑥(𝑥,𝑦),𝜕𝑣||||[[||||𝜕𝜕𝑦(𝑥,𝑦)𝜀,𝑥0,𝑎),𝑦0,𝑏),(2.2)2𝑣(𝜕𝑥𝜕𝑦𝑥,𝑦)𝑓𝑥,𝑦,𝑣(𝑥,𝑦),𝜕𝑣(𝜕𝑥𝑥,𝑦),𝜕𝑣(||||[[||||𝜕𝜕𝑦𝑥,𝑦)𝜑(𝑥,𝑦),𝑥0,𝑎),𝑦0,𝑏),(2.3)2𝑣𝜕𝑥𝜕𝑦(𝑥,𝑦)𝑓𝑥,𝑦,𝑣(𝑥,𝑦),𝜕𝑣𝜕𝑥(𝑥,𝑦),𝜕𝑣||||[[𝜕𝑦(𝑥,𝑦)𝜀𝜑(𝑥,𝑦),𝑥0,𝑎),𝑦0,𝑏).(2.4)

Definition 2.1. A function 𝑢 is a solution to (2.1) if 𝑢𝐶1([[𝜕0,𝑎)×0,𝑏),𝔹),2𝑢([[𝜕𝑥𝜕𝑦𝐶0,𝑎)×0,𝑏),𝔹)(2.5) and 𝑢 satisfies (2.1).

From [5, 6] we have the following definitions and results.

Definition 2.2. Equation (2.1) is Ulam-Hyers stable if there exist the real numbers 𝐶1𝑓, 𝐶2𝑓, and 𝐶3𝑓>0 such that for any 𝜀>0 and for any solution 𝑣 to the inequality (2.2) there exists a solution 𝑢 to (2.1) with ||||𝑣(𝑥,𝑦)𝑢(𝑥,𝑦)𝐶1𝑓[[|||𝜀,𝑥0,𝑎),𝑦0,𝑏),𝜕𝑣(𝜕𝑥𝑥,𝑦)𝜕𝑢(|||𝜕𝑥𝑥,𝑦)𝐶2𝑓[[||||𝜀,𝑥0,𝑎),𝑦0,𝑏),𝜕𝑣𝜕𝑦(𝑥,𝑦)𝜕𝑢||||𝜕𝑦(𝑥,𝑦)𝐶3𝑓[[𝜀,𝑥0,𝑎),𝑦0,𝑏).(2.6)

Definition 2.3. Equation (2.1) is generalised Ulam-Hyers-Rassias stable if there exist the real numbers 𝐶1𝑓,𝜑, 𝐶2𝑓,𝜑, and 𝐶3𝑓,𝜑>0 such that for any 𝜀>0 and for any solution 𝑣 to the inequality (2.3) there exists a solution 𝑢 to (2.1) with ||||𝑣(𝑥,𝑦)𝑢(𝑥,𝑦)𝐶1𝑓,𝜑[[|||𝜑(𝑥,𝑦),𝑥0,𝑎),𝑦0,𝑏),𝜕𝑣(𝜕𝑥𝑥,𝑦)𝜕𝑢(|||𝜕𝑥𝑥,𝑦)𝐶2𝑓,𝜑[[||||𝜑(𝑥,𝑦),𝑥0,𝑎),𝑦0,𝑏),𝜕𝑣𝜕𝑦(𝑥,𝑦)𝜕𝑢||||𝜕𝑦(𝑥,𝑦)𝐶3𝑓,𝜑[[𝜑(𝑥,𝑦),𝑥0,𝑎),𝑦0,𝑏).(2.7)

Remark 2.4. A function 𝑣 is a solution to the inequality (2.2) if and only if, there exists a function 𝑔𝐶([0,𝑎)×[0,𝑏),𝔹), which depends on 𝑣, such that(i)For all 𝜀>0,|𝑔(𝑥,𝑦)|𝜀, for all 𝑥[0,𝑎), for all 𝑦[0,𝑏);(ii)For all 𝑥[0,𝑎), for all 𝑦[0,𝑏):𝜕2𝑣𝜕𝑥𝜕𝑦(𝑥,𝑦)=𝑓𝑥,𝑦,𝑣(𝑥,𝑦),𝜕𝑣𝜕𝑥(𝑥,𝑦),𝜕𝑣𝜕𝑦(𝑥,𝑦)+𝑔(𝑥,𝑦).(2.8)

Remark 2.5. A function 𝑣 is a solution to the inequality (2.3) if and only if, there exists a function 𝑔𝐶([0,𝑎)×[0,𝑏),𝔹), which depends on 𝑣, such that(i)|𝑔(𝑥,𝑦)|𝜑(𝑥,𝑦), for all 𝑥[0,𝑎), for all 𝑦[0,𝑏);(ii)For all 𝑥[0,𝑎), for all 𝑦[0,𝑏):𝜕2𝑣𝜕𝑥𝜕𝑦(𝑥,𝑦)=𝑓𝑥,𝑦,𝑣(𝑥,𝑦),𝜕𝑣𝜕𝑥(𝑥,𝑦),𝜕𝑣𝜕𝑦(𝑥,𝑦)+𝑔(𝑥,𝑦).(2.9)

Remark 2.6. A function 𝑣 is a solution to the inequality (2.4) if and only if, there exists a function 𝑔𝐶([0,𝑎)×[0,𝑏),𝔹), which depends on 𝑣, such that(i)For all 𝜀>0,|𝑔(𝑥,𝑦)|𝜀𝜑(𝑥,𝑦), for all 𝑥[0,𝑎), for all 𝑦[0,𝑏);(ii)For all 𝑥[0,𝑎), for all 𝑦[0,𝑏):𝜕2𝑣𝜕𝑥𝜕𝑦(𝑥,𝑦)=𝑓𝑥,𝑦,𝑣(𝑥,𝑦),𝜕𝑣𝜕𝑥(𝑥,𝑦),𝜕𝑣𝜕𝑦(𝑥,𝑦)+𝑔(𝑥,𝑦).(2.10)

Throughout this paper we denote𝑢1(𝑥,𝑦)=𝜕𝑢𝜕𝑥(𝑥,𝑦),𝑢2(𝑥,𝑦)=𝜕𝑢𝑣𝜕𝑦(𝑥,𝑦),1(𝑥,𝑦)=𝜕𝑣𝜕𝑥(𝑥,𝑦),𝑣2(𝑥,𝑦)=𝜕𝑣𝜕𝑦(𝑥,𝑦).(2.11)

Theorem 2.7. If 𝑣 is a solution to the inequality (2.2), then (𝑣,𝑣1,𝑣2) satisfies the following system of integral inequalities: ||||𝑣(𝑥,𝑦)𝑣(𝑥,0)𝑣(0,𝑦)+𝑣(0,0)𝑥0𝑦0𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2||||||||𝑣(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜀𝑥𝑦,1(𝑥,𝑦)𝑣1(𝑥,0)𝑦0𝑓𝑥,𝑡,𝑣(𝑥,𝑡),𝑣1(𝑥,𝑡),𝑣2(||||||||𝑣𝑥,𝑡)𝑑𝑡𝜀𝑦,2(𝑥,𝑦)𝑣2(0,𝑦)𝑥0𝑓𝑠,𝑦,𝑣(𝑠,𝑦),𝑣1(𝑠,𝑦),𝑣2||||(𝑠,𝑦)𝑑𝑠𝜀𝑥,(2.12) for all 𝑥[0,𝑎) and 𝑦[0,𝑏).

Proof. By Remark 2.4 we have that +𝑣(𝑥,𝑦)=𝑣(𝑥,0)+𝑣(0,𝑦)𝑣(0,0)𝑥0𝑦0𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2(𝑠,𝑡)𝑑𝑠𝑑𝑡+𝑥0𝑦0𝑣𝑔(𝑠,𝑡)𝑑𝑠𝑑𝑡1(𝑥,𝑦)=𝑣1(𝑥,0)+𝑦0𝑓𝑥,𝑡,𝑣(𝑥,𝑡),𝑣1(𝑥,𝑡),𝑣2(𝑥,𝑡)𝑑𝑡+𝑦0𝑣𝑔(𝑥,𝑡)𝑑𝑡2(𝑥,𝑦)=𝑣2(0,𝑦)+𝑥0𝑓𝑠,𝑦,𝑣(𝑠,𝑦),𝑣1(𝑠,𝑦),𝑣2(𝑠,𝑦)𝑑𝑠+𝑥0𝑔(𝑠,𝑦)𝑑𝑠,(2.13) and we have the following inequalities: ||||𝑣(𝑥,𝑦)𝑣(𝑥,0)𝑣(0,𝑦)+𝑣(0,0)𝑥0𝑦0𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2||||=||||(𝑠,𝑡)𝑑𝑠𝑑𝑡𝑥0𝑦0||||𝑔(𝑠,𝑡)𝑑𝑠𝑑𝑡𝑥0𝑦0||||||||𝑣𝑔(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜀𝑥𝑦,1(𝑥,𝑦)𝑣1(𝑥,0)𝑦0𝑓𝑥,𝑡,𝑣(𝑥,𝑡),𝑣1(𝑥,𝑡),𝑣2||||(𝑥,𝑡)𝑑𝑡𝑦0||𝑔||||||𝑣(𝑥,𝑡)𝑑𝑡𝜀𝑦,2(𝑥,𝑦)𝑣2(0,𝑦)𝑥0𝑓𝑠,𝑦,𝑣(𝑠,𝑦),𝑣1(𝑠,𝑦),𝑣2(||||𝑠,𝑦)𝑑𝑠𝑥0||||𝑔(𝑠,𝑦)𝑑𝑠𝜀𝑥.(2.14)

The following two theorems are obtained in a similar fashion.

Theorem 2.8. If 𝑣 is a solution to the inequality (2.3), then (𝑣,𝑣1,𝑣2) satisfies the following system of integral inequalities: ||||𝑣(𝑥,𝑦)𝑣(𝑥,0)𝑣(0,𝑦)+𝑣(0,0)𝑥0𝑦0𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2||||(𝑠,𝑡)𝑑𝑠𝑑𝑡𝑥0𝑦0||||𝑣𝜑(𝑠,𝑡)𝑑𝑠𝑑𝑡,1(𝑥,𝑦)𝑣1(𝑥,0)𝑦0𝑓𝑥,𝑡,𝑣(𝑥,𝑡),𝑣1(𝑥,𝑡),𝑣2||||(𝑥,𝑡)𝑑𝑡𝑦0||||𝑣𝜑(𝑥,𝑡)𝑑𝑡,2(𝑥,𝑦)𝑣2(0,𝑦)𝑥0𝑓𝑠,𝑦,𝑣(𝑠,𝑦),𝑣1(𝑠,𝑦),𝑣2||||(𝑠,𝑦)𝑑𝑠𝑥0𝜑(𝑠,𝑦)𝑑𝑠,(2.15) for all 𝑥[0,𝑎) and 𝑦[0,𝑏).

Theorem 2.9. If 𝑣 is a solution to the inequality (2.4), then (𝑣,𝑣1,𝑣2) satisfies the following system of integral inequalities: ||||𝑣(𝑥,𝑦)𝑣(𝑥,0)𝑣(0,𝑦)+𝑣(0,0)𝑥0𝑦0𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2||||(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜀𝑥0𝑦0||||𝑣𝜑(𝑠,𝑡)𝑑𝑠𝑑𝑡,1(𝑥,𝑦)𝑣1(𝑥,0)𝑦0𝑓𝑥,𝑡,𝑣(𝑥,𝑡),𝑣1(𝑥,𝑡),𝑣2||||(𝑥,𝑡)𝑑𝑡𝜀𝑦0||||𝑣𝜑(𝑥,𝑡)𝑑𝑡,2(𝑥,𝑦)𝑣2(0,𝑦)𝑥0𝑓𝑠,𝑦,𝑣(𝑠,𝑦),𝑣1(𝑠,𝑦),𝑣2||||(𝑠,𝑦)𝑑𝑠𝜀𝑥0𝜑(𝑠,𝑦)𝑑𝑠,(2.16) for all 𝑥[0,𝑎) and 𝑦[0,𝑏).

The following Gronwall type lemma is an important tool in proving the main results of this paper.

Lemma 2.10 (see [7], also [8]). One assumes that(i)𝑢,𝑣,𝐶(𝑛+,+); (ii)for any 𝑡𝑡0 one has 𝑢(𝑡)(𝑡)+𝑡𝑡0𝑣(𝑠)𝑢(𝑠)𝑑𝑠;(2.17)(iii)(𝑡) is positive and nondecreasing.Then, 𝑢(𝑡)(𝑡)exp𝑡𝑠𝑣(𝑟)𝑑𝑟,forany𝑡𝑡0.(2.18)

3. Ulam-Hyers Stability

In this section we present a result on the existence and uniqueness of the solution to (2.1) and derive a result on Ulam-Hyers stability for the same equation in the case of 𝑎< and 𝑏<.

Theorem 3.1. One assumes that(i)𝑎<, 𝑏<; (ii)𝑓𝐶([0,𝑎]×[0,𝑏]×𝔹3,𝔹);(iii)there exists 𝐿𝑓>0 such that ||𝑓𝑥,𝑦,𝑧1,𝑧2,𝑧3𝑓𝑥,𝑦,𝑡1,𝑡2,𝑡3||𝐿𝑓||𝑧max𝑖𝑡𝑖||,,𝑖=1,2,3(3.1) for all 𝑥[0,𝑎], 𝑦[0,𝑏] and 𝑧1,𝑧2,𝑧3,𝑡1,𝑡2,𝑡3𝔹.
Then,(a)for 𝜙𝐶1([0,𝑎],𝔹) and 𝜓𝐶1([0,𝑏],𝔹) (2.1) has a unique solution, which satisfies [],𝑢[];𝑢(𝑥,0)=𝜙(𝑥),𝑥0,𝑎(0,𝑦)=𝜓(𝑦),𝑦0,𝑏(3.2)(b)(2.1) is Ulam-Hyers stable.

Proof. (a) This is a known result (see, e.g, [9, 10]).
(b) Let 𝑣 be a solution to the inequality (2.2) and let 𝑢 be the unique solution to (2.1), which satisfies the following conditions: [],𝑢[].𝑢(𝑥,0)=𝑣(𝑥,0),𝑥0,𝑎(0,𝑦)=𝑣(0,𝑦),𝑦0,𝑏(3.3) From Theorem 2.7, the hypothesis (iii), and Gronwall Lemma 2.10, it follows that ||||||||𝑣(𝑥,𝑦)𝑢(𝑥,𝑦)𝑣(𝑥,𝑦)𝑣(𝑥,0)𝑣(0,𝑦)+𝑣(0,0)𝑥0𝑦0𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2||||+(𝑠,𝑡)𝑑𝑠𝑑𝑡𝑥0𝑦0||𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2(𝑠,𝑡)𝑓𝑠,𝑡,𝑢(𝑠,𝑡),𝑢1(𝑠,𝑡),𝑢2||(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜀𝑥𝑦+𝐿𝑓𝑥0𝑦0max𝑖{1,2,3}||𝑣𝑖(𝑠,𝑡)𝑢𝑖||𝐿(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜀𝑎𝑏exp𝑓𝑎𝑏=𝐶1𝑓𝜀,where𝐶1𝑓𝐿=𝑎𝑏exp𝑓.𝑎𝑏(3.4) Similarly we have ||𝑣1(𝑥,𝑦)𝑢1||||||𝑣(𝑥,𝑦)1(𝑥,𝑦)𝑣1(𝑥,0)𝑦0𝑓𝑥,𝑡,𝑣(𝑥,𝑡),𝑣1(𝑥,𝑡),𝑣2||||+(𝑥,𝑡)𝑑𝑡𝑦0||𝑓𝑥,𝑡,𝑣(𝑥,𝑡),𝑣1(𝑥,𝑡),𝑣2(𝑥,𝑡)𝑓𝑥,𝑡,𝑢(𝑥,𝑡),𝑢1(𝑥,𝑡),𝑢2||(𝑥,𝑡)𝑑𝑡𝜀𝑦+𝐿𝑓𝑦0max𝑖{1,2,3}||𝑣𝑖(𝑥,𝑡)𝑢𝑖||𝐿(𝑥,𝑡)𝑑𝑡𝜀𝑏exp𝑓𝑏=𝐶2𝑓𝜀,where𝐶2𝑓𝐿=𝑏exp𝑓𝑏,||𝑣2(𝑥,𝑦)𝑢2||||||𝑣(𝑥,𝑦)2(𝑥,𝑦)𝑣2(0,𝑦)𝑥0𝑓𝑠,𝑦,𝑣(𝑠,𝑦),𝑣1(𝑠,𝑦),𝑣2||||+(𝑠,𝑦)𝑑𝑠𝑥0||𝑓𝑠,𝑦,𝑣(𝑠,𝑦),𝑣1(𝑠,𝑦),𝑣2(𝑠,𝑦)𝑓𝑠,𝑦,𝑢(𝑠,𝑦),𝑢1(𝑠,𝑦),𝑢2||(𝑠,𝑦)𝑑𝑠𝜀𝑥+𝐿𝑓𝑥0max𝑖{1,2,3}||𝑣𝑖(𝑠,𝑦)𝑢𝑖(||𝐿𝑠,𝑦)𝑑𝑠𝜀𝑎exp𝑓𝑎=𝐶3𝑓𝜀,where𝐶3𝑓𝐿=𝑎exp𝑓𝑎.(3.5)

Remark 3.2. In general, if 𝑎= or 𝑏=, then (2.1) is not Ulam-Hyers stable.

4. Generalised Ulam-Hyers-Rassias Stability

In this section we prove the generalised Ulam-Hyers-Rassias stability of the hyperbolic partial differential equation (2.1). We consider (2.1) and the inequality (2.3) in the case 𝑎= and 𝑏=.

Theorem 4.1. One assumes that(i)𝐶([0,)×[0,)×𝔹3,𝔹);(ii)there exists 𝑙𝑓𝐶1([0,)×[0,),+) such that ||𝑓𝑥,𝑦,𝑧1,𝑧2,𝑧3𝑓𝑥,𝑦,𝑡1,𝑡2,𝑡3||𝑙𝑓||𝑧(𝑥,𝑦)max𝑖𝑡𝑖||,,𝑖=1,2,3(4.1) for all 𝑥,𝑦[0,);(iii)there exist 𝜆1𝜑,𝜆2𝜑,𝜆3𝜑>0 such that 𝑥0𝑦0𝜑(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜆1𝜑[𝜑(𝑥,𝑦),𝑥,𝑦0,),𝑦0𝜑(𝑥,𝑡)𝑑𝑡𝜆2𝜑[𝜑(𝑥,𝑦),𝑥,𝑦0,),𝑥0𝜑(𝑠,𝑦)𝑑𝑠𝜆3𝜑[𝜑(𝑥,𝑦),𝑥,𝑦0,);(4.2)(iv)𝜑+×++ is increasing.Then (2.1) (𝑎= and 𝑏=) is generalised Ulam-Hyers-Rassias stable.

Proof. Let 𝑣 be a solution to the inequality (2.3). Denote by 𝑢 the unique solution to the Darboux problem: 𝜕2𝑢𝜕𝑥𝜕𝑦(𝑥,𝑦)=𝑓𝑥,𝑦,𝑢(𝑥,𝑦),𝑢1(𝑥,𝑦),𝑢2[[[(𝑥,𝑦),𝑥,𝑦0,),𝑢(𝑥,0)=𝑣(𝑥,0),𝑥0,),𝑢(0,𝑦)=𝑣(0,𝑦),𝑦0,).(4.3) If 𝑢 is a solution to the Darboux problem (4.3), then (𝑢,𝑢1,𝑢2) is a solution to the following system: 𝑢(𝑥,𝑦)=𝑣(𝑥,0)+𝑣(0,𝑦)𝑣(0,0)+𝑥0𝑦0𝑓𝑠,𝑡,𝑢(𝑠,𝑡),𝑢1(𝑠,𝑡),𝑢2𝑢(𝑠,𝑡)𝑑𝑠𝑑𝑡,1(𝑥,𝑦)=𝑣1(𝑥,0)+𝑦0𝑓𝑥,𝑡,𝑢(𝑥,𝑡),𝑢1(𝑥,𝑡),𝑢2𝑢(𝑥,𝑡)𝑑𝑡,2(𝑥,𝑦)=𝑣2(0,𝑦)+𝑥0𝑓𝑠,𝑦,𝑢(𝑠,𝑦),𝑢1(𝑠,𝑦),𝑢2(𝑠,𝑦)𝑑𝑠.(4.4) From Theorem 2.8 and the hypothesis (iii), it follows that ||||𝑣(𝑥,𝑦)𝑣(𝑥,0)𝑣(0,𝑦)+𝑣(0,0)𝑥0𝑦0𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2||||(𝑠,𝑡)𝑑𝑠𝑑𝑡𝑥0𝑦0𝜑(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜆1𝜑[||||𝑣𝜑(𝑥,𝑦),𝑥,𝑦0,),1(𝑥,𝑦)𝑣1(𝑥,0)𝑦0𝑓𝑥,𝑡,𝑣(𝑥,𝑡),𝑣1(𝑥,𝑡),𝑣2||||(𝑥,𝑡)𝑑𝑡𝑦0𝜑(𝑥,𝑡)𝑑𝑡𝜆2𝜑[||||𝑣𝜑(𝑥,𝑦),𝑥,𝑦0,),2(𝑥,𝑦)𝑣2(0,𝑦)𝑥0𝑓𝑠,𝑦,𝑣(𝑠,𝑦),𝑣1(𝑠,𝑦),𝑣2||||(𝑠,𝑦)𝑑𝑠𝑥0𝜑(𝑠,𝑦)𝑑𝑠𝜆3𝜑[𝜑(𝑥,𝑦),𝑥,𝑦0,).(4.5) Using (4.5) gives us ||||||||𝑣(𝑥,𝑦)𝑢(𝑥,𝑦)𝑣(𝑥,𝑦)𝑣(𝑥,0)𝑣(0,𝑦)+𝑣(0,0)𝑥0𝑦0𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2||||+(𝑠,𝑡)𝑑𝑠𝑑𝑡𝑥0𝑦0||𝑓𝑠,𝑡,𝑣(𝑠,𝑡),𝑣1(𝑠,𝑡),𝑣2(𝑠,𝑡)𝑓𝑠,𝑡,𝑢(𝑠,𝑡),𝑢1(𝑠,𝑡),𝑢2||(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜆1𝜑𝜑(𝑥,𝑦)+𝑥0𝑦0𝑙𝑓(𝑠,𝑡)max𝑖{1,2,3}||𝑣𝑖(𝑠,𝑡)𝑢𝑖||(𝑠,𝑡)𝑑𝑠𝑑𝑡.(4.6) From Lemma 2.10 it follows that ||||𝑣(𝑥,𝑦)𝑢(𝑥,𝑦)𝜆1𝜑exp00𝑙𝑓[||||(𝑠,𝑡)𝑑𝑠𝑑𝑡𝜑(𝑥,𝑦),𝑥,𝑦0,)or𝑣(𝑥,𝑦)𝑢(𝑥,𝑦)𝐶1𝑓,𝜑[𝜑(𝑥,𝑦),𝑥,𝑦0,),(4.7) where 𝐶1𝑓,𝜑=𝜆1𝜑exp00𝑙𝑓(𝑠,𝑡)𝑑𝑠𝑑𝑡.
Similarly, we have ||𝑣1(𝑥,𝑦)𝑢1||(𝑥,𝑦)𝜆2𝜑𝜑(𝑥,𝑦)+𝑦0𝑙𝑓(𝑥,𝑡)max𝑖{1,2,3}||𝑣𝑖(𝑥,𝑡)𝑢𝑖||(𝑥,𝑡)𝑑𝑡,(4.8) and from Lemma 2.10 we get ||𝑣1(𝑥,𝑦)𝑢1||(𝑥,𝑦)𝜆2𝜑exp0𝑙𝑓[||𝑣(𝑥,𝑡)𝑑𝑡𝜑(𝑥,𝑦),𝑥,𝑦0,)or1(𝑥,𝑦)𝑢1||(𝑥,𝑦)𝐶2𝑓,𝜑[𝜑(𝑥,𝑦),𝑥,𝑦0,),(4.9) where 𝐶2𝑓,𝜑=𝜆2𝜑exp0𝑙𝑓(𝑥,𝑡)𝑑𝑡.
Also, ||𝑣2(𝑥,𝑦)𝑢2||(𝑥,𝑦)𝜆3𝜑𝜑(𝑥,𝑦)+𝑥0𝑙𝑓(𝑠,𝑦)max𝑖{1,2,3}||𝑣𝑖(𝑠,𝑦)𝑢𝑖||(𝑠,𝑦)𝑑𝑠.(4.10) By using Lemma 2.10 we obtain ||𝑣2(𝑥,𝑦)𝑢2||(𝑥,𝑦)𝜆3𝜑exp0𝑙𝑓[||𝑣(𝑠,𝑦)𝑑𝑠𝜑(𝑥,𝑦),𝑥,𝑦0,)or2(𝑥,𝑦)𝑢2||(𝑥,𝑦)𝐶3𝑓,𝜑[𝜑(𝑥,𝑦),𝑥,𝑦0,),(4.11) where 𝐶3𝑓,𝜑=𝜆3𝜑exp0𝑙𝑓(𝑠,𝑦)𝑑𝑠.
So, (2.1) is generalised Ulam-Hyers-Rassias stable.