Table of Contents
ISRN Communications and Networking
Volume 2012 (2012), Article ID 621526, 7 pages
http://dx.doi.org/10.5402/2012/621526
Research Article

Improved Handset Antenna Performance via an Electrically Extended Ground Plane

Advanced Technology, Research In Motion Limited, 560 Westmount Rd. N., Waterloo, ON, Canada N2L 0A9

Received 12 December 2011; Accepted 18 January 2012

Academic Editors: M. Y. W. Chia and J. Park

Copyright © 2012 Shirook M. Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Kivekäs, J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and efficiency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, no. 1, pp. 71–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Taga and K. Tsunekawa, “Performance analysis of a built-in planar inverted F antenna for 800 MHz band portable radio units,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 5, pp. 921–929, 1987. View at Google Scholar · View at Scopus
  3. K. Sato, K. Matsumoto, K. Fujimoto, and K. Hirasawa, “Characteristics of a planar inverted-F antenna on a rectangular conducting body,” Electronics and Communications in Japan, Part I, vol. 72, no. 10, pp. 43–51, 1989. View at Google Scholar · View at Scopus
  4. T. Taga, “Analysis of planar inverted-F antennas and antenna design for portable radio equipment,” in Analysis Design, and Measurement of Small and Low Profile Antennas, K. Hirasava and M. Heneishi, Eds., Artech House, 1992. View at Google Scholar
  5. P. Vainikainen, J. Ollikainen, O. Kivekäs, and I. Kelander, “Resonator-based analysis of the combination of mobile handset antenna and chassis,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 10, pp. 1433–1444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Manteuffel, A. Bahr, and I. Wolff, “Investigation on integrated antennas for GSM mobile phones,” in Proceedings of the Millennium Conference on Antennas Propagation, 2000.
  7. D. Manteuffel, A. Bahr, D. Heberling, and I. Wolff, “Design considerations for integrated mobile phone antennas,” in Proceedings of the International Conference on Antennas Propagation, pp. 252–256, 2001.
  8. A. T. Arkko and E. A. Lehtola, “Simulated impedance bandwidths, gains, radiation patterns and SAR values of a helical and a PIFA antenna on top of different ground planes,” in Proceedings of the International Conference on Antennas Propagation, pp. 651–654, 2001.
  9. S. M. Ali and H. Gu, “Chassis wavemode effects on hearing aid compatibility at 900 MHz,” in Proceedings of the International Conference on Antennas Propagation, pp. 651–654, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Ali and H. Gu, “Chassis wavemode effects on hearing aid compatibility (HAC) in the handset”. View at Google Scholar
  11. R. Hossa, A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 283–285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. W. Chiou and K. L. Wong, “Designs of compact microstrip antennas with a slotted ground plane,” in IEEE Antennas and Propagation Symposium, pp. 732–735, July 2001. View at Scopus
  13. S. M. Ali and H. Kanj, “Hex-band antenna for slim handheld device applications,” Microwave and Optical Technology Letters, vol. 51, no. 11, pp. 2527–2530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. SEMCAD-X Reference Manual, Zeughausstrasse 43, Schmid & Partner Engineering AG (SPEAG), Zurich, Switzerland, 2007.
  15. ANSI C63.19-2007 (Revision of ANSI C63.19-2006), American national standard methods of measurement of compatibility between wireless communications devices and hearing aids, June 2007.
  16. T. Taga and K. Tsunekawa, “Performance analysis of a built-in inverted-F antenna for 800 MHz band portable radio units,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 5, pp. 921–929, 1987. View at Google Scholar · View at Scopus
  17. H. Nakano, N. Ikeda, Y. Y. Wu, R. Suzuki, H. Mimaki, and J. Yamauchi, “Realization of dual-frequency and wide-band VSWR performances using normal-mode helical and inverted-F antennas,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 6, pp. 788–793, 1998. View at Google Scholar · View at Scopus
  18. T. Tag, Analysis, Design, and Measurement of Small and Low-Profile Antennas, Artech-House, Boston, Mass, USA, 1992.
  19. W. Geyi, Q. Rao, S. Ali, and D. Wang, “Handset antenna design: practice and theory,” Progress in Electromagnetics Research, vol. 80, pp. 123–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices—Measurement Techniques, Institute of Electrical and Electronics Engineers, New York, NY, USA, 2003.