Table of Contents
ISRN Signal Processing
Volume 2012, Article ID 628706, 6 pages
http://dx.doi.org/10.5402/2012/628706
Research Article

Cochlear Implant Speech Processing Using Wavelet Transform

1Medical Physics & Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran 1417613151, Iran
2Biomedical Group, Research Centre for Science and Technology in Medicine, Tehran 14185615, Iran
3Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada M5B 2K3
4Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Received 9 April 2012; Accepted 29 May 2012

Academic Editors: W.-L. Hwang, S. Kwong, and A. Rubio Ayuso

Copyright © 2012 M. Mehrzad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Liberman and L. W. Dodds, “Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves,” Hearing Research, vol. 16, no. 1, pp. 55–74, 1984. View at Publisher · View at Google Scholar · View at Scopus
  2. P. C. Loizou, “Mimicking the human ear,” IEEE Signal Processing Magazine, vol. 15, no. 5, pp. 101–130, 1998. View at Google Scholar · View at Scopus
  3. V. Gopalakrishna, N. Kehtarnavaz, and P. C. Loizou, “A recursive wavelet-based strategy for real-time cochlear implant speech processing on PDA platforms,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 8, pp. 2053–2063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sunny, D. Peter, and K. P. Jacob, “Recognition of speech signals: an experimental comparison of linear predictive coding and discrete wavelet transforms,” International Journal of Engineering Science, vol. 4, no. 4, pp. 1594–1601, 2012. View at Google Scholar
  5. A. Paglialonga, G. Tognola, G. Baselli, M. Parazzini, P. Ravazzani, and F. Grandori, “Speech processing for cochlear implants with the discrete wavelet transform: feasibility study and performance evaluation,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp. 3763–3766, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Nogueira, A. Giese, B. Edler, and A. Büchner, “Wavelet packet filterbank for speech processing strategies in cochlear implants,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '06), pp. V121–V124, May 2006. View at Scopus
  7. Software User Manual, N95246F Issue 1, Nucleus MATLAB Toolbox 2.11, Cochlear Corporation, Lane Cove, NSW, 2002.
  8. B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington, and W. M. Rabinowitz, “Better speech recognition with cochlear implants,” Nature, vol. 352, no. 6332, pp. 236–238, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. P. C. Loizou, “Speech processing in vocoder-centric cochlear implants,” Advances in Oto-Rhino-Laryngology, vol. 64, pp. 109–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Buechner, C. Frohne-Buechner, P. Boyle, R. D. Battmer, and T. Lenarz, “A high rate n-of-m speech processing strategy for the first generation Clarion cochlear implant,” International Journal of Audiology, vol. 48, no. 12, pp. 868–875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. J. Fu and R. V. Shannon, “Phoneme recognition by cochlear implant users as a function of signal- to-noise ratio and nonlinear amplitude mapping,” Journal of the Acoustical Society of America, vol. 106, no. 2, pp. L18–L23, 1999. View at Publisher · View at Google Scholar · View at Scopus