Table of Contents
ISRN Renewable Energy
Volume 2012 (2012), Article ID 631574, 14 pages
http://dx.doi.org/10.5402/2012/631574
Review Article

Algal Biofuels: A Credible Prospective?

Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK

Received 31 October 2012; Accepted 5 December 2012

Academic Editors: M. S. Abdel-Mottaleb and H. Boyer

Copyright © 2012 Bhavish Patel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Solomon, D. Qin, M. Manning et al., Contribution of Working Group I To the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2007.
  2. D. J. C. MacKay, “Solar II,” in Sustainable Energy—Without the Hot Air, D. J. C. MacKay, Ed., pp. 283–289, UIT Cambridge, Great Britain, UK, 1st edition, 2009. View at Google Scholar
  3. M. J. Groom, E. M. Gray, and P. A. Townsend, “Biofuels and biodiversity: principles for creating better policies for biofuel production,” Conservation Biology, vol. 22, no. 3, pp. 602–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Pimentel, A. Marklein, M. A. Toth et al., “Food versus biofuels: environmental and economic costs,” Human Ecology, vol. 37, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Lynas, “The Climate change boundary,” in The God Species: How the Planet Can Survive the Age of Humans, M. Lynas, Ed., pp. 85–110, HarperCollins, Great Britain, UK, 1st edition, 2011. View at Google Scholar
  6. T. Searchinger, R. Heimlich, R. A. Houghton et al., “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” Science, vol. 319, no. 5867, pp. 1238–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Peharz, F. Dimroth, and U. Wittstadt, “Solar hydrogen production by water splitting with a conversion efficiency of 18%,” International Journal of Hydrogen Energy, vol. 32, no. 15, pp. 3248–3252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. E. Oh, P. Iyer, M. A. Bruns, and B. E. Logan, “Biological hydrogen production using a membrane bioreactor,” Biotechnology and Bioengineering, vol. 87, no. 1, pp. 119–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Skjånes, P. Lindblad, and J. Muller, “BioCO2—a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products,” Biomolecular Engineering, vol. 24, no. 4, pp. 405–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Kruse and B. Hankamer, “Microalgal hydrogen production,” Current Opinion in Biotechnology, vol. 21, no. 3, pp. 238–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. E. Blankenship, D. M. Tiede, J. Barber et al., “Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement,” Science, vol. 332, no. 6031, pp. 805–809, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Esper, A. Badura, and M. Rögner, “Photosynthesis as a power supply for (bio-)hydrogen production,” Trends in Plant Science, vol. 11, no. 11, pp. 543–549, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Cracknell, K. A. Vincent, M. Ludwig, O. Lenz, B. Friedrich, and F. A. Armstrong, “Enzymatic oxidation of H2 in atmospheric O2: the electrochemistry of energy generation from trace H2 by aerobic microorganisms,” Journal of the American Chemical Society, vol. 130, no. 2, pp. 424–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Kruse, J. Rupprecht, J. H. Mussgnug, G. C. Dismukes, and B. Hankamer, “Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies,” Photochemical and Photobiological Sciences, vol. 4, no. 12, pp. 957–970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Faunce, “Artificial photosynthesis: feeding and fuelling the future,” Australasian Science, vol. 32, no. 10, pp. 20–22, 2011. View at Google Scholar
  16. L. L. Beer, E. S. Boyd, J. W. Peters, and M. C. Posewitz, “Engineering algae for biohydrogen and biofuel production,” Current Opinion in Biotechnology, vol. 20, no. 3, pp. 264–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Chisti, “Biodiesel from microalgae beats bioethanol,” Trends in Biotechnology, vol. 26, no. 3, pp. 126–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Stephens, I. L. Ross, J. H. Mussgnug et al., “Future prospects of microalgal biofuel production systems,” Trends in Plant Science, vol. 15, no. 10, pp. 554–564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert, “Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii,” Plant Physiology, vol. 122, no. 1, pp. 127–135, 2000. View at Google Scholar · View at Scopus
  20. A. Doebbe, M. Keck, M. La Russa et al., “The interplay of proton, electron, and metabolite supply fors photosynthetic H2 production in Chlamydomonas reinhardtii,” Journal of Biological Chemistry, vol. 285, no. 39, pp. 30247–30260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Faraloni, A. Ena, C. Pintucci, and G. Torzillo, “Enhanced hydrogen production by means of sulfur-deprived Chlamydomonas reinhardtii cultures grown in pretreated olive mill wastewater,” International Journal of Hydrogen Energy, vol. 36, no. 10, pp. 5920–5931, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Kosourov, E. Patrusheva, M. L. Ghirardi, M. Seibert, and A. Tsygankov, “A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions,” Journal of Biotechnology, vol. 128, no. 4, pp. 776–787, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Hankamer, F. Lehr, J. Rupprecht, J. H. Mussgnug, C. Posten, and O. Kruse, “Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up,” Physiologia Plantarum, vol. 131, no. 1, pp. 10–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Encyclopædia Britannica Online, s. v., "blue-green algae", 2012, http://www.britannica.com/EBchecked/topic/70231/blue-green-algae.
  25. D. Dutta, D. De, S. Chaudhuri, and S. K. Bhattacharya, “Hydrogen production by Cyanobacteria,” Microbial Cell Factories, vol. 4, article 36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Brenner, L. Bildsten, F. Dyson et al., “Engineering microorganisms for energy production,” Tech. Rep. JSR-05-300, The MITRE Corporation JASON Program Office, 2006. View at Google Scholar
  27. A. Parmar, N. K. Singh, A. Pandey, E. Gnansounou, and D. Madamwar, “Cyanobacteria and microalgae: a positive prospect for biofuels,” Bioresource Technology, vol. 102, no. 22, pp. 10163–10172, 2011. View at Publisher · View at Google Scholar
  28. C. M. Yeager, C. E. Milliken, C. E. Bagwell, L. Staples, P. A. Berseth, and H. T. Sessions, “Evaluation of experimental conditions that influence hydrogen production among heterocystous Cyanobacteria,” International Journal of Hydrogen Energy, vol. 36, no. 13, pp. 7487–7499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Bandyopadhyay, J. Stöckel, H. Min, L. A. Sherman, and H. B. Pakrasi, “High rates of photobiological H2 production by a cyanobacterium under aerobic conditions,” Nature Communications, vol. 1, no. 9, article 139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Angermayr, K. J. Hellingwerf, P. Lindblad, and M. J. Teixeira de, “Energy biotechnology with cyanobacteria,” Current Opinion in Biotechnology, vol. 20, no. 3, pp. 257–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. I. Hileman, R. W. Stratton, and P. E. Donohoo, “Energy content and alternative jet fuel viability,” Journal of Propulsion and Power, vol. 26, no. 6, pp. 1184–1196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. L. Kelly-Yong, K. T. Lee, A. R. Mohamed, and S. Bhatia, “Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide,” Energy Policy, vol. 35, no. 11, pp. 5692–5701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Brennan and P. Owende, “Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 557–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. C. Ducat, J. C. Way, and P. A. Silver, “Engineering cyanobacteria to generate high-value products,” Trends in Biotechnology, vol. 29, no. 2, pp. 95–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Pulz and W. Gross, “Valuable products from biotechnology of microalgae,” Applied Microbiology and Biotechnology, vol. 65, no. 6, pp. 635–648, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. R. H. Wijffels and M. J. Barbosa, “An outlook on microalgal biofuels,” Science, vol. 329, no. 5993, pp. 796–799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. http://www.ecoduna.com/projects/ecoduna-vattenfall/.
  38. J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, “A look back at the U.S. department of energy’s aquatic species program: biodiesel from algae,” Tech. Rep. NREL/TP58024190, 1998. View at Google Scholar
  39. C. Posten, “Design principles of photo-bioreactors for cultivation of microalgae,” Engineering in Life Sciences, vol. 9, no. 3, pp. 165–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Tamburic, F. W. Zemichael, P. Crudge, G. C. Maitland, and K. Hellgardt, “Design of a novel flat-plate photobioreactor system for green algal hydrogen production,” International Journal of Hydrogen Energy, vol. 36, no. 11, pp. 6578–6591, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Oilgae, Cost-Reduction Strategies Developed by Various Photobioreactor Manufacturers, 2012, http://www.oilgae.com/ref/downloads/cost-reduction-strategy-PBR.pdf.
  42. A. Sun, R. Davis, M. Starbuck, A. Ben-Amotz, R. Pate, and P. T. Pienkos, “Comparative cost analysis of algal oil production for biofuels,” Energy, vol. 36, no. 8, pp. 5169–5179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. N. H. Norsker, M. J. Barbosa, M. H. Vermuë, and R. H. Wijffels, “Microalgal production—a close look at the economics,” Biotechnology Advances, vol. 29, no. 1, pp. 24–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Molina Grima, E. H. Belarbi, F. G. Acién Fernández, A. Robles Medina, and Y. Chisti, “Recovery of microalgal biomass and metabolites: process options and economics,” Biotechnology Advances, vol. 20, no. 7-8, pp. 491–515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. H. C. Greenwell, L. M. L. Laurens, R. J. Shields, R. W. Lovitt, and K. J. Flynn, “Placing microalgae on the biofuels priority list: a review of the technological challenges,” Journal of the Royal Society Interface, vol. 7, no. 46, pp. 703–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. K. Choi, J. Y. Lee, D. Y. Kwon, and K. J. Cho, “Settling characteristics of problem algae in the water treatment process,” Water Science and Technology, vol. 53, no. 7, pp. 113–119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. J. Lee, S. B. Kim, J. E. Kim, G. S. Kwon, B. D. Yoon, and H. M. Oh, “Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii,” Letters in Applied Microbiology, vol. 27, no. 1, pp. 14–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Morales, J. de la Noüe, and G. Picard, “Harvesting marine microalgae species by chitosan flocculation,” Aquacultural Engineering, vol. 4, no. 4, pp. 257–270, 1985. View at Google Scholar · View at Scopus
  49. P. M. Schenk, S. R. Thomas-Hall, E. Stephens et al., “Secong generation biofuels: high-effeciency microalgae for biodiesel production,” Bioenergy Research, vol. 1, no. 1, pp. 20–43, 2008. View at Publisher · View at Google Scholar
  50. J. R. Benemann and W. J. Oswald, “Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass,” Tech. Rep., 1996. View at Google Scholar
  51. R. Bosma, W. A. Van Spronsen, J. Tramper, and R. H. Wijffels, “Ultrasound, a new separation technique to harvest microalgae,” Journal of Applied Phycology, vol. 15, no. 2-3, pp. 143–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. A. K. Lee, D. M. Lewis, and P. J. Ashman, “Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel,” Journal of Applied Phycology, vol. 21, no. 5, pp. 559–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Lardon, A. Hélias, B. Sialve, J. P. Steyer, and O. Bernard, “Life-cycle assessment of biodiesel production from microalgae,” Environmental Science and Technology, vol. 43, no. 17, pp. 6475–6481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Sander and G. S. Murthy, “Life cycle analysis of algae biodiesel,” International Journal of Life Cycle Assessment, vol. 15, no. 7, pp. 704–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Chisti and M. Moo-Young, “Disruption of microbial cells for intracellular products,” Enzyme and Microbial Technology, vol. 8, no. 4, pp. 194–204, 1986. View at Google Scholar · View at Scopus
  56. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Google Scholar · View at Scopus
  57. R. S. Mohamed and G. A. Mansoori, The Use of Supercritical Fluid Extraction Technology in Food Processing, Featured Article—Food Technology Magazine, The World Markets Research Center, London, UK, 2002.
  58. F. Sahena, I. S. M. Zaidul, S. Jinap et al., “Application of supercritical CO2 in lipid extraction—a review,” Journal of Food Engineering, vol. 95, no. 2, pp. 240–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. K. Lam and K. T. Lee, “Microalgae biofuels: a critical review of issues, problems and the way forward,” Biotechnology Advances, vol. 30, no. 3, pp. 673–690, 2012. View at Publisher · View at Google Scholar
  60. S. Venkata Mohan, M. Prathima Devi, G. Mohanakrishna, N. Amarnath, M. Lenin Babu, and P. N. Sarma, “Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment,” Bioresource Technology, vol. 102, no. 2, pp. 1109–1117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Amin, “Review on biofuel oil and gas production processes from microalgae,” Energy Conversion and Management, vol. 50, no. 7, pp. 1834–1840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Subhadra and M. Edwards, “An integrated renewable energy park approach for algal biofuel production in United States,” Energy Policy, vol. 38, no. 9, pp. 4897–4902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. P. M. Foley, E. S. Beach, and J. B. Zimmerman, “Algae as a source of renewable chemicals: opportunities and challenges,” Green Chemistry, vol. 13, no. 6, pp. 1399–1405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin, “Synthesis of biodiesel via acid catalysis,” Industrial and Engineering Chemistry Research, vol. 44, no. 14, pp. 5353–5363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. E. A. Ehimen, Z. F. Sun, and C. G. Carrington, “Variables affecting the in situ transesterification of microalgae lipids,” Fuel, vol. 89, no. 3, pp. 677–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. L. C. Meher, D. Vidya Sagar, and S. N. Naik, “Technical aspects of biodiesel production by transesterification—a review,” Renewable and Sustainable Energy Reviews, vol. 10, no. 3, pp. 248–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Carrero, G. Vicente, R. Rodríguez, M. Linares, and G. L. Del Peso, “Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil,” Catalysis Today, vol. 167, no. 1, pp. 148–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. E. S. Umdu, M. Tuncer, and E. Seker, “Transesterification of Nannochloropsis oculata microalga's lipid to biodiesel on Al2O3 supported CaO and MgO catalysts,” Bioresource Technology, vol. 100, no. 11, pp. 2828–2831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Shah, S. Sharma, and M. N. Gupta, “Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil,” Energy and Fuels, vol. 18, no. 1, pp. 154–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Balat and H. Balat, “A critical review of bio-diesel as a vehicular fuel,” Energy Conversion and Management, vol. 49, no. 10, pp. 2727–2741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Demirbas, “Comparison of transesterification methods for production of biodiesel from vegetable oils and fats,” Energy Conversion and Management, vol. 49, no. 1, pp. 125–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. U. Schuchardt, R. Sercheli, and R. M. Vargas, “Transesterification of vegetable oils: a review,” Journal of the Brazilian Chemical Society, vol. 9, no. 3, pp. 199–210, 1998. View at Google Scholar · View at Scopus
  73. J. M. Marchetti, V. U. Miguel, and A. F. Errazu, “Possible methods for biodiesel production,” Renewable and Sustainable Energy Reviews, vol. 11, no. 6, pp. 1300–1311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Aimaretti, D. L. Manuale, V. M. Mazzieri, C. R. Vera, and J. C. Yori, “Batch study of glycerol decomposition in one-stage supercritical production of biodiesel,” Energy and Fuels, vol. 23, no. 2, pp. 1076–1080, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. V. F. Marulanda, G. Anitescu, and L. L. Tavlarides, “Biodiesel fuels through a continuous flow process of chicken fat supercritical transesterification,” Energy and Fuels, vol. 24, no. 1, pp. 253–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Warabi, D. Kusdiana, and S. Saka, “Biodiesel fuel from vegetable oil by various supercritical alcohols,” Applied Biochemistry and Biotechnology, vol. 115, no. 1–3, pp. 793–801, 2004. View at Google Scholar · View at Scopus
  77. R. B. Levine, T. Pinnarat, and P. E. Savage, “Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification,” Energy and Fuels, vol. 24, no. 9, pp. 5235–5243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. P. D. Patil, V. G. Gude, A. Mannarswamy et al., “Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions,” Bioresource Technology, vol. 102, no. 1, pp. 118–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. G. Knothe, “Improving biodiesel fuel properties by modifying fatty ester composition,” Energy and Environmental Science, vol. 2, no. 7, pp. 759–766, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Kalnes, T. Marker, and D. R. Shonnard, “Green diesel: a second generation biofuel,” International Journal of Chemical Reactor Engineering, vol. 5, article A48, 2007. View at Google Scholar · View at Scopus
  81. N. H. Tran, J. R. Bartlett, G. S. K. Kannangara, A. S. Milev, H. Volk, and M. A. Wilson, “Catalytic upgrading of biorefinery oil from micro-algae,” Fuel, vol. 89, no. 2, pp. 265–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. T. M. Brown, P. Duan, and P. E. Savage, “Hydrothermal liquefaction and gasification of Nannochloropsis sp,” Energy and Fuels, vol. 24, no. 6, pp. 3639–3646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Harun and M. K. Danquah, “Enzymatic hydrolysis of microalgal biomass for bioethanol production,” Chemical Engineering Journal, vol. 168, no. 3, pp. 1079–1084, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. S. I. Mussatto, G. Dragone, P. M. R. Guimarães et al., “Technological trends, global market, and challenges of bio-ethanol production,” Biotechnology Advances, vol. 28, no. 6, pp. 817–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. R. P. John, G. S. Anisha, K. M. Nampoothiri, and A. Pandey, “Micro and macroalgal biomass: a renewable source for bioethanol,” Bioresource Technology, vol. 102, no. 1, pp. 186–193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Harun, M. K. Danquah, and G. M. Forde, “Microalgal biomass as a fermentation feedstock for bioethanol production,” Journal of Chemical Technology and Biotechnology, vol. 85, no. 2, pp. 199–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. J. R. Regalbuto, “Engineering: cellulosic biofuels–got gasoline?” Science, vol. 325, no. 5942, pp. 822–824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Hirano, R. Ueda, S. Hirayama, and Y. Ogushi, “CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation,” Energy, vol. 22, no. 2-3, pp. 137–142, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. I. V. Babich, M. van der Hulst, L. Lefferts, J. A. Moulijn, P. O'Connor, and K. Seshan, “Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels,” Biomass and Bioenergy, vol. 35, no. 7, pp. 3199–3207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Grierson, V. Strezov, G. Ellem, R. Mcgregor, and J. Herbertson, “Thermal characterisation of microalgae under slow pyrolysis conditions,” Journal of Analytical and Applied Pyrolysis, vol. 85, no. 1-2, pp. 118–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Hirano, K. Hon-Nami, S. Kunito, M. Hada, and Y. Ogushi, “Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance,” Catalysis Today, vol. 45, no. 1–4, pp. 399–404, 1998. View at Google Scholar · View at Scopus
  92. Y. Calzavara, C. Joussot-Dubien, G. Boissonnet, and S. Sarrade, “Evaluation of biomass gasification in supercritical water process for hydrogen production,” Energy Conversion and Management, vol. 46, no. 4, pp. 615–631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Minowa and S. Sawayama, “A novel microalgal system for energy production with nitrogen cycling,” Fuel, vol. 78, no. 10, pp. 1213–1215, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. Q. Guan, P. E. Savage, and C. Wei, “Gasification of alga Nannochloropsis sp. in supercritical water,” The Journal of Supercritical Fluids, vol. 61, pp. 139–145, 2012. View at Publisher · View at Google Scholar
  95. A. G. Chakinala, D. W. F. Brilman, W. P. M. Van Swaaij, and S. R. A. Kersten, “Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol,” Industrial and Engineering Chemistry Research, vol. 49, no. 3, pp. 1113–1122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. K. B. Cantrell, T. Ducey, K. S. Ro, and P. G. Hunt, “Livestock waste-to-bioenergy generation opportunities,” Bioresource Technology, vol. 99, no. 17, pp. 7941–7953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. S. M. Phang, M. S. Miah, B. G. Yeoh, and M. A. Hashim, “Spirulina cultivation in digested sago starch factory wastewater,” Journal of Applied Phycology, vol. 12, no. 3–5, pp. 395–400, 2000. View at Google Scholar · View at Scopus
  98. B. Sialve, N. Bernet, and O. Bernard, “Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable,” Biotechnology Advances, vol. 27, no. 4, pp. 409–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. H. W. Yen and D. E. Brune, “Anaerobic co-digestion of algal sludge and waste paper to produce methane,” Bioresource Technology, vol. 98, no. 1, pp. 130–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. J. C. Weissman and R. P. Goebel, “Design and analysis of microalgal open pond systems for the purpose of producing fuels: a subcontract report,” Tech. Rep., Solar Energy Research Institute, Golden, Colo, USA, 1987. View at Google Scholar
  101. P. Collet, A. Hélias Arnaud, L. Lardon, M. Ras, R. A. Goy, and J. P. Steyer, “Life-cycle assessment of microalgae culture coupled to biogas production,” Bioresource Technology, vol. 102, no. 1, pp. 207–214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. M. L. Ghirardi, L. Zhang, J. W. Lee et al., “Microalgae: a green source of renewable H2,” Trends in Biotechnology, vol. 18, no. 12, pp. 506–511, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. B. Tamburic, F. W. Zemichael, G. C. Maitland, and K. Hellgardt, “Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii,” International Journal of Hydrogen Energy, vol. 36, no. 13, pp. 7872–7876, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Melis and T. Happe, “Hydrogen production. Green algae as a source of energy,” Plant Physiology, vol. 127, no. 3, pp. 740–748, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. B. G. Subhadra, “Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach,” Energy Policy, vol. 38, no. 10, pp. 5892–5901, 2010. View at Publisher · View at Google Scholar · View at Scopus