Abstract

We study homogeneous linear elliptic partial differential equations of even order. Several maximum principle results are deduced for such equations as well as a priori bounds for certain boundary value problems.

1. Introduction

The 𝑃-function technique for obtaining subharmonic functions defined on the solution of certain partial differential equations of order 4 is well established. In [1] Miranda shows that the functional 𝑃=𝑢,𝑖𝑢,𝑖𝑢Δ𝑢 is subharmonic where 𝑢 is a solution to the biharmonic equation Δ2𝑢=0. Later, in [2], Payne uses functionals containing the square of the second gradient of the solution to semilinear equations of the formΔ2𝑢=𝑓(𝑢)(1.1) to deduce integral bounds on (Δ𝑢)2.

Other works such as [3, 4] develop maximum principle results for the sixth-order equations of the formΔ3𝑢𝑎Δ2𝑢+𝑏Δ𝑢𝑐𝑢=0(1.2) with constant coefficients. In [5, 6], 𝑃-functions containing the squares of terms of the form Δ𝑖𝑢 are used to obtain a priori that bounds for solutions to the constant coefficient 𝑚-metaharmonic equationΔ𝑚𝑢+𝑎𝑚1Δ𝑚1𝑢++𝑎0𝑢=0.(1.3)

Most recently the authors in [7] obtain maximum principles results for the more general variable coefficient 𝑚-metaharmonic equationΔ𝑚𝑢𝑎𝑚1(𝑥)Δ𝑚1𝑢+𝑎𝑚2(𝑥)Δ𝑚2𝑢+(1)𝑚𝑎0(𝑥)𝑢=0(1.4) using 𝑃-functions containing terms of the form (Δ𝑖𝑢)2. For three special cases, namely, when 𝑚=3, 𝑚=4, and when (1.4) reduces to the equation Δ𝑚𝑢=0 for any integer 𝑚2, a more complicated class of 𝑃-functions containing the squares of certain gradient terms is used. An open question arising from [7] is whether maximum principle results for (1.4) can be obtained for say any integer 𝑚>4 for the latter class of 𝑃-functions. In this work, we establish such results by requiring that certain bounds and differential inequalities for the the coefficient functions 𝑎0(𝑥),,𝑎𝑚2(𝑥) hold. Then we obtain integral bounds on various gradient terms.

2. Assumptions and Results

Throughout this work we assume that Ω is a bounded domain in 𝐑𝐧 whose boundary 𝜕Ω is sufficiently smooth, that the integer 𝑛2 is even (without loss of generality), and that the integer 𝑚>4. We identify the products of the first, second, and third gradients of the functions 𝑣 and 𝑤 as follows:𝑣,𝑖𝑤,𝑖𝑣𝑤,𝑣,𝑖𝑗𝑤,𝑖𝑗2𝑣2𝑤,𝑣,𝑖𝑗𝑘𝑤,𝑖𝑗𝑘3𝑣3𝑤,(2.1) where the commas denote partial differentiation.

For functions 𝑎𝑖(𝑥)𝐶2(Ω) we impose the boundedness conditions𝑚3𝑖=0𝑎2𝑖𝛽,𝑚1𝑖=0𝑎𝑖𝑎𝑖𝛾,(2.2) for constants 𝛾0, 𝛽>0.

Finally, Δ denotes the Laplace operator, Δ𝑚Δ(Δ𝑚1), and Δ0𝐼.

Now we derive two general maximum principle results for (1.4).

Theorem 2.1. Suppose that 𝑢𝐶2𝑚+1(Ω)𝐶2𝑚1(Ω) is a solution of (1.4). Furthermore for 𝑛>4 one defines 𝑃=2Δ𝑚2𝑢2Δ𝑚2𝑢Δ𝑚2𝑢Δm1𝑢+𝑎𝑚12Δ𝑚2𝑢Δ𝑚2𝑢+𝑎𝑚32Δ𝑚3𝑢Δ𝑚3𝑢+𝑚2𝑖=0𝜙𝑖(Δ𝑖𝑢)2+𝑎𝑚2𝑛4𝑛+2(Δ𝑚2𝑢)2(4𝑛)2(𝑛+2)(Δ𝑚1𝑢)2,(2.3) where the functions 𝜙0(𝑥),,𝜙𝑚2(𝑥)𝐶2(Ω)𝐶0(Ω) satisfy 𝑚2𝑖=0𝜙2𝑖+1𝛼 for some positive constant 𝛼.
Additionally, one imposes the conditions 𝜙𝑖𝛽2𝑎(𝑖=0,,𝑚2),𝑚2𝑎1,𝑚112𝛾2𝑛+2,𝑛4Δ𝑎𝑖2𝑎𝑚𝑖𝑎𝑚𝑖𝑎𝑚𝑖0(𝑖=1,3),Δ𝑎𝑚24𝑎𝑚2𝑎𝑚2𝑎𝑚20,Δ𝜙𝑖3𝛽max2𝑛4+𝛾𝑛+22,𝛼,4𝜙𝑖𝜙𝑖𝜙𝑖(𝑖=0,,𝑚2).(2.4)
Then, 𝑃 is subharmonic in Ω.

Proof. A straightforward calculation yields Δ𝑃=23Δ𝑚2𝑢3Δ𝑚2𝑢6Δ𝑛+2𝑚1𝑢Δ𝑚1𝑢Δ𝑚2𝑢(Δ𝑚𝑢)4𝑛Δ𝑛+2𝑚1𝑢Δ𝑚𝑢+𝑎𝑚12Δ𝑚2𝑢2Δ𝑚2𝑢+𝑎𝑚1Δ𝑚2𝑢Δ𝑚1𝑢+𝑎𝑚32Δ𝑚3𝑢2Δ𝑚3𝑢+𝑎𝑚3Δ𝑚3𝑢Δ𝑚2𝑢+𝑚2𝑖=0Δ𝜙𝑖Δ𝑖𝑢2𝜙+4𝑖Δ𝑖𝑢Δ𝑖𝑢+2𝜙𝑖Δ𝑖𝑢Δ𝑖𝑢+𝑎𝑚2𝑛4Δ𝑛+2𝑚2𝑢Δ𝑚2𝑢+Δ𝑚2𝑢Δ𝑚1𝑢+𝑛4𝑛+2Δ𝑎𝑚2(Δ𝑚2𝑢)2+4𝑛4𝑛+2𝑎𝑚2Δ𝑚2𝑢Δ𝑚2𝑢+12Δ𝑎𝑚1Δ𝑚2𝑢Δ𝑚2𝑢+12Δ𝑎𝑚3Δ𝑚3𝑢Δ𝑚3𝑢+2𝑎𝑚1Δ𝑚2𝑢2Δ𝑚2𝑢+2𝑎𝑚3Δ𝑚3𝑢2Δ𝑚3𝑢+𝑚2𝑖=02𝜙𝑖Δ𝑖𝑢Δ𝑖+1𝑢.(2.5) Using the well-known inequality (see [2]) 3𝑤33𝑤𝑛+2(Δ𝑤)(Δ𝑤),forallfunctions𝑤𝐶3(Ω),(2.6) and (1.4) we deduce the inequality ΔΔ𝑃𝑚2𝑢𝑚1𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢+𝑚1𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢+𝑛4Δ𝑛+2𝑚1𝑢𝑚1𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢+𝑎𝑚12Δ𝑚2𝑢2Δ𝑚2𝑢+𝑎𝑚1Δ𝑚2𝑢Δ𝑚1𝑢+𝑎𝑚32Δ𝑚3𝑢2Δ𝑚3𝑢+𝑎𝑚3Δ𝑚3𝑢Δ𝑚2𝑢+𝑚2𝑖=0Δ𝜙𝑖(Δ𝑖𝑢)2𝜙+4𝑖Δ𝑖𝑢Δ𝑖𝑢+2𝜙𝑖Δ𝑖𝑢Δ𝑖𝑢+𝑎𝑚2𝑛4Δ𝑛+2𝑚2𝑢Δ𝑚2𝑢+Δ𝑚2𝑢Δ𝑚1𝑢+𝑛4𝑛+2Δ𝑎𝑚2(Δ𝑚2𝑢)2+4𝑛4𝑛+2𝑎𝑚2Δ𝑚2𝑢Δ𝑚2𝑢+12Δ𝑎𝑚1Δ𝑚2𝑢Δ𝑚2𝑢+12Δ𝑎𝑚3Δ𝑚3𝑢Δ𝑚3𝑢+2𝑎𝑚1Δ𝑚2𝑢2Δ𝑚2𝑢+2𝑎𝑚3Δ𝑚3𝑢2Δ𝑚3𝑢+𝑚2𝑖=02𝜙𝑖Δ𝑖𝑢Δ𝑖+1𝑢.(2.7) The right side of (2.7) is =𝑎𝑚21+𝑛4Δ𝑛+2𝑚2𝑢Δ𝑚2𝑢+𝑎𝑚1𝑛4Δ𝑛+2𝑚1𝑢2+𝑎𝑚12Δ𝑚2𝑢2Δ𝑚2𝑢+𝑎𝑚32Δ𝑚3𝑢2Δ𝑚3𝑢+𝑚2𝑖=0Δ𝜙𝑖Δ𝑖𝑢2𝜙+4𝑖Δ𝑖𝑢Δ𝑖𝑢+2𝜙𝑖Δ𝑖𝑢Δ𝑖𝑢+𝑛4Δ𝑛+2𝑚1𝑢𝑚3𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖Δ𝑢𝑚2𝑢𝑚1𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢+𝑛4𝑛+2Δ𝑎𝑚2(Δ𝑚2𝑢)2+4𝑛4𝑛+2𝑎𝑚2Δ𝑚2𝑢Δ𝑚2𝑢+12Δ𝑎𝑚1Δ𝑚2𝑢Δ𝑚2𝑢+12Δ𝑎𝑚3Δ𝑚3𝑢Δ𝑚3𝑢+2𝑎𝑚1Δ𝑚2𝑢2Δ𝑚2𝑢+2𝑎𝑚3Δ𝑚3𝑢2Δ𝑚3𝑢Δ𝑚2𝑢𝑚4𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢+𝑚2𝑖=02𝜙𝑖Δ𝑖𝑢Δ𝑖+1𝑢.(2.8) Subsequently, we obtain 𝑎Δ𝑃𝑚21+𝑛4Δ𝑛+21𝑚2𝑢Δ𝑚2𝑢+𝑎𝑚12Δ𝑚2𝑢2Δ𝑚2𝑢+𝑎𝑚32Δ𝑚3𝑢2Δ𝑚3𝑢+𝑎𝑚112𝑛4𝑛+2(Δ𝑚1𝑢)212𝑚1𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢212𝑛4𝑛+2𝑚3𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢212𝑚4𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢2+𝑚2𝑖=0Δ𝜙𝑖Δ𝑖𝑢2𝜙+4𝑖Δ𝑖𝑢Δ𝑖𝑢+2𝜙𝑖Δ𝑖𝑢Δ𝑖𝑢+𝑛4𝑛+2Δ𝑎𝑚2(Δ𝑚2𝑢)2+4𝑛4𝑛+2𝑎𝑚2Δ𝑚2𝑢Δ𝑚2𝑢+12Δ𝑎𝑚1Δ𝑚2𝑢Δ𝑚2𝑢+12Δ𝑎𝑚3Δ𝑚3𝑢Δ𝑚3𝑢+2𝑎𝑚1Δ𝑚2𝑢2Δ𝑚2𝑢+2𝑎𝑚3Δ𝑚3𝑢2Δ𝑚3𝑢+𝑚2𝑖=02𝜙𝑖Δ𝑖𝑢Δ𝑖+1𝑢.(2.9) We now state a series of inequalities to demonstrate that Δ𝑃0. First we note 𝑚2𝑖=02𝜙𝑖Δ𝑖𝑢Δ𝑖+1𝑢𝑚2𝑖=0𝜙𝑖2+1𝑚2𝑖=0(Δ𝑖𝑢)2.(2.10) Similarly, we obtain 12𝑚1𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢212𝑚1𝑖=0𝑎𝑖𝑎𝑖(Δ𝑚1𝑢)212𝑚1𝑖=0𝑎𝑖𝑎𝑖𝑚2𝑖=0Δ𝑖𝑢Δ𝑖𝑢,(2.11)12𝑛4𝑛+2𝑚3𝑖=0(1)𝑖+1a𝑖Δ𝑖𝑢212𝑛4𝑛+2𝑚3𝑖=0𝑎2𝑖𝑚3𝑖=0(Δ𝑖𝑢)2,(2.12)12𝑚4𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢212𝑚4𝑖=0𝑎2𝑖𝑚4𝑖=0Δ𝑖𝑢Δ𝑖𝑢,(2.13)+𝑚2𝑖=0Δ𝜙𝑖(Δ𝑖𝑢)2𝜙+4𝑖Δ𝑖𝑢Δ𝑖𝑢+𝜙𝑖Δ𝑖𝑢Δ𝑖𝑢𝑚2𝑖=0(Δ𝑖𝑢)2Δ𝜙𝑖3𝜙4𝑖𝜙𝑖𝜙𝑖.(2.14) We also have that 12Δ𝑎𝑚1Δ𝑚2𝑢Δ𝑚2𝑢+2𝑎𝑚1Δ𝑚2𝑢2Δ𝑚2𝑢+𝑎𝑚12Δ𝑚2𝑢2Δ𝑚2𝑢Δ𝑚2𝑢Δ𝑚2𝑢Δ𝑎𝑚12𝑎𝑚1𝑎𝑚1𝑎𝑚1.(2.15) Additional inequalities analogous to (2.15) can be developed for the remaining terms in (2.9) involving Δ𝑎𝑚2 and Δ𝑎𝑚3.
From (2.2), (2.10)–(2.15) and upon inclusion of the aforementioned additional inequalities we deduce that𝑎Δ𝑃𝑚112𝑛41𝑛+22𝑚1𝑖=0𝑎𝑖𝑎𝑖Δ𝑚1𝑢2+𝑚2𝑖=0Δ𝜙𝑖3𝛽2𝑛4𝛾𝑛+22Δ𝑖𝑢2+𝑚2𝑖=0𝜙𝑖𝛽2Δ𝑖𝑢2+𝑚2𝑖=0Δ𝜙𝑖3Δ𝛼𝑖𝑢2+𝑚2𝑖=0Δ𝑖𝑢2Δ𝜙𝑖3𝜙4𝑖𝜙𝑖𝜙𝑖+𝑎𝑚2Δ1𝑚2𝑢Δ𝑚2𝑢Δ+𝑚2𝑢Δ𝑚2𝑢Δ𝑎𝑚12𝑎𝑚1𝑎𝑚1𝑎𝑚1Δ+𝑚3𝑢Δ𝑚3𝑢Δ𝑎𝑚32𝑎𝑚3𝑎𝑚3𝑎𝑚3+𝑛4𝑛+2(Δ𝑚2𝑢)2Δ𝑎𝑚24𝑎𝑚2𝑎𝑚2𝑎𝑚2.(2.16) Utilizing (2.4) the conclusion follows.

Now we handle the case where 𝑛4 in the following theorem.

Theorem 2.2. Suppose that 𝑢𝐶2𝑚+1(Ω)𝐶2𝑚1(Ω) is a solution of (1.4) where 𝑛4. For 𝜙0(𝑥),,𝜙𝑚1(𝑥)𝐶2(Ω)𝐶0(Ω)satisfying the inequality 𝑚2𝑖=0𝜙2𝑖+1𝛼 for some positive constant 𝛼, one defines 𝑃=2Δ𝑚2𝑢2Δ𝑚2𝑢Δ𝑚2𝑢Δ𝑚1𝑢+𝑚1𝑖=0𝜙𝑖Δ𝑖𝑢2+12Δ𝑚2𝑢2.(2.17) Then if 𝜙𝑖𝛼2,for𝑖=0,,𝑚1,Δ𝜙𝑚𝑖3120,for𝑖=1,2,Δ𝜙𝑖34𝜙𝑖𝜙𝑖𝜙𝑖0,for𝑖=0,,𝑚1,(2.18)𝑃is subharmonic in Ω.

Proof. A calculation similar to that of Theorem 2.1 yields Δ𝑃=23Δ𝑚2𝑢3Δ𝑚2𝑢Δ𝑚1𝑢Δ𝑚1𝑢Δ𝑚2𝑢𝑚1𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖Δ𝑢+𝑚2𝑢Δ𝑚2𝑢Δ𝑚2𝑢𝑚1𝑖=0(1)𝑖+1𝑎𝑖Δ𝑖𝑢+Δ𝑚2𝑢Δ𝑚1𝑢+𝑚1𝑖=0Δ𝜙𝑖(Δ𝑖𝑢)2𝜙+4𝑖Δ𝑖𝑢Δ𝑖𝑢+𝑚1𝑖=02𝜙𝑖Δ𝑖𝑢Δ𝑖𝑢+2𝜙𝑖Δ𝑖𝑢Δ𝑖+1𝑢.(2.19) Using (2.6), (2.10), (2.11), (2.13), and (2.14) we obtain Δ𝑃𝑚1𝑖=0Δ𝑖𝑢2Δ𝜙𝑖34𝜙𝑖𝜙𝑖𝜙𝑖+𝑚1𝑖=02Δ𝜙𝑖3Δ𝑖𝑢2+𝑚1𝑖=0𝜙𝑖Δ𝑖𝑢Δ𝑖𝑢Δ𝑚2𝑢Δ𝑚2𝑢12Δ𝑚2𝑢212Δ𝑚1𝑢2Δ+𝑚2𝑢Δ𝑚2𝑢12𝑚1𝑖=0𝑎𝑖𝑎𝑖𝑚1𝑖=0Δ𝑖𝑢212𝑚1𝑖=0𝑎2𝑖𝑚1𝑖=0Δ𝑖𝑢Δ𝑖𝑢𝑚1𝑖=0Δ𝑖𝑢2Δ𝜙𝑖34𝜙𝑖𝜙𝑖𝜙𝑖+𝑚1𝑖=0𝜙𝑖𝛼2(Δ𝑢)(Δ𝑢)+𝑚1𝑖=0Δ𝜙𝑖3𝛾2Δ𝑖𝑢2+Δ𝜙𝑚2312Δ𝑚2𝑢2+Δ𝜙𝑚1312Δ𝑚1𝑢2.(2.20) Hence by (2.18), we conclude that Δ𝑃0.

3. Applications

Here we briefly indicate how theorem 1 and theorem 2 can be used to obtain integral bounds on the square of the second gradient of Δ𝑚2𝑢. suppose that the hypotheses of theorem 1 are satisfied and that the 𝑚 conditionsΔ𝑖𝑢=0,forΔ𝑖=0,,𝑚5,𝑚2Δ𝑢=𝑚2𝑢𝜕𝑛=0,Δ𝑚3Δ𝑢=𝑚3𝑢𝜕𝑛=0(3.1) hold on 𝜕Ω. Let 𝐴 denote the area of Ω. As a consequence of integration by parts, Theorem 2.1 implies thatΩ||2Δ𝑚2𝑢||2𝐴𝑑𝑥2max𝜕Ω||2Δ𝑚2𝑢||2+𝜙𝑚4Δ(𝑥)𝑚4𝑢2+𝑛42(nΔΔ+2)𝑚2𝑢2.(3.2)

Now, if the hypotheses of Theorem 2.2 hold and if we impose the 𝑚 conditionsΔ𝑖𝑢=0,forΔ𝑖=0,,𝑚3,𝑚2Δ𝑢=𝑚2𝑢𝜕𝑛=0(3.3) on 𝜕Ω we can deduce the inequalityΩ||2Δ𝑚2𝑢||2𝐴𝑑𝑥2max𝜕Ω||2Δ𝑚2𝑢||2+𝜙𝑚1(ΔΔ𝑥)𝑚2𝑢2,(3.4) from Theorem 2.2.