Table of Contents
ISRN Pharmaceutics
Volume 2012 (2012), Article ID 653465, 7 pages
http://dx.doi.org/10.5402/2012/653465
Research Article

Itraconazole Niosomes Drug Delivery System and Its Antimycotic Activity against Candida albicans

1Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, Shirpur 425405, India
2Formulation and Development Department, Shreya Life Sciences Pvt. Ltd., MIDC, Waluj, Maharashtra, Aurangabad 431001, India

Received 23 October 2012; Accepted 11 November 2012

Academic Editors: K. Goracinova and M. R. Jaafari

Copyright © 2012 Vijay D. Wagh and Onkar J. Deshmukh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Puranajoti, R. T. Patil, P. D. Sheth, G. Bommareddy, P. Dondeti, and K. Egbaria, “Design and development of topical microemulsion for poorly water-soluble antifungal agents,” Journal of Applied Research, vol. 2, no. 1, pp. 27–28, 2002. View at Google Scholar · View at Scopus
  2. H. M. El Laithy and K. M. F. El-Shaboury, “The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole,” AAPS Pharmacetical Science Technology, vol. 3, no. 4, p. 35, 2002. View at Google Scholar · View at Scopus
  3. S. Mukherjee, S. Ray, and R. S. Thakur, “Design and evaluation of Itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy,” Pakistan Journal of Pharmaceutical Sciences, vol. 22, no. 2, pp. 131–138, 2009. View at Google Scholar · View at Scopus
  4. H. Schreier, “Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery,” Journal of Controlled Release, vol. 30, no. 1, pp. 1–15, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Arora and C. P. Jain, “Advances in niosome as a drug carrier: a review,” Asian Journal of Pharmaceutics, vol. 1, pp. 29–39, 2007. View at Google Scholar
  6. Y. Dan-Bo, Z. Jia-Bi, L. Rui-Qin, H. Zhi-Qiang, and S. Jin-Qiu, “Liquid chromatographic method for determination of free and niosome-entrapped nimodipine in mouse plasma and different tissues,” Analytical Letters, vol. 41, no. 4, pp. 533–542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. R. Naresh, G. K. Pillai, N. Udupa, and G. Chandrashekar, “Anti-inflammatory activity of niosome encapsulated diclofenac sodium in arthritic rats,” Indian Journal of Pharmacology, vol. 26, no. 1, pp. 46–48, 1994. View at Google Scholar · View at Scopus
  8. C. P. Jain, S. P. Vyas, and V. K. Dixit, “Niosomal system for delivery of rifampicin to lymphatics,” Indian Journal of Pharmaceutical Sciences, vol. 68, no. 5, pp. 575–578, 2006. View at Google Scholar · View at Scopus
  9. A. Manosroi, P. Jantrawut, and J. Manosroi, “Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium,” International Journal of Pharmaceutics, vol. 360, no. 1-2, pp. 156–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Bouwstra, H. E. H. Hofland, F. Spies, G. S. Gorrisand, and H. E. Junginger, “Liposomes and human stratum corneum in vitro,” in Drug Targeting and Delivery Concepts in Dosage form Design, H. E. Junginger, Ed., vol. 1, p. 205, Ellio Horwood, Chichester, UK, 1992. View at Google Scholar
  11. H. E. Junginger, H. E. J. Hofland, and J. A. Bouwstra, “Liposomes and niosomes: interaction with human skin,” Cosmetics & Toiletries, vol. 106, pp. 45–50, 1991. View at Google Scholar
  12. E. Touitou, H. E. Junginger, N. D. Weiner, T. Nagai, and M. Mezei, “Liposomes as carriers for topical and transdermal delivery,” Journal of Pharmaceutical Sciences, vol. 83, no. 9, pp. 1189–1203, 1994. View at Google Scholar · View at Scopus
  13. S. Perrett, M. Golding, and W. P. Williams, “A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes,” Journal of Pharmacy and Pharmacology, vol. 43, no. 3, pp. 154–161, 1991. View at Google Scholar · View at Scopus
  14. B. Vora, A. J. Khopade, and N. K. Jain, “Proniosome based transdermal delivery of levonorgestrel for effective contraception,” Journal of Controlled Release, vol. 54, no. 2, pp. 149–165, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. D. I. Nesseem, “Formulation and evaluation of itraconazole via liquid crystal for topical delivery system,” Journal of Pharmaceutical and Biomedical Analysis, vol. 26, no. 3, pp. 387–399, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. I. A. Alsarra, A. A. Bosela, S. M. Ahmed, and G. M. Mahrous, “Proniosomes as a drug carrier for transdermal delivery of ketorolac,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 59, no. 3, pp. 485–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. T. Yoshioka, B. B. Sternberg, and A. T. Florence, “Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85),” International Journal of Pharmaceutics, vol. 105, no. 1, pp. 1–6, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Dubey, D. Mishra, and N. K. Jain, “Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, no. 2, pp. 398–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Barry and K. Gawrisch, “Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers,” Biochemistry, vol. 33, no. 26, pp. 8082–8088, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. V. D. Wagh and O. J. Deshmukh, “Niosomes as a ophthalmic drug delivery system: a review,” Journal of Pharmacy Research, vol. 3, no. 7, pp. 1558–1563, 2010. View at Google Scholar
  21. C. Bernsdorff, A. Wolf, R. Winter, and E. Gratton, “Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers,” Biophysical Journal, vol. 72, no. 3, pp. 1264–1277, 1997. View at Google Scholar · View at Scopus
  22. K. Muppidi, A. S. Pumerantz, J. Wang, and G. Betagiri, “Development and stability studies of novel liposomal vancomycin formulations,” ISRN Pharmaceutics, vol. 2, pp. 1–8, 2012. View at Google Scholar
  23. D. Bitounis, R. Fanciullino, A. Iliadis, and J. Ciccolini, “optimizing druggability through liposomal formulation: new approaches to an old concept,” ISRN Pharmaceutics, vol. 2, pp. 1–11, 2012. View at Google Scholar
  24. M. S. El-Samaligy, N. N. Afifi, and E. A. Mahmoud, “Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation,” International Journal of Pharmaceutics, vol. 308, no. 1-2, pp. 140–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Mokhtar, O. A. Sammour, M. A. Hammad, and N. A. Megrab, “Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes,” International Journal of Pharmaceutics, vol. 361, no. 1-2, pp. 104–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Y. Fang, S. Y. Yu, P. C. Wu, Y. B. Huang, and Y. H. Tsai, “In vitro skin permeation of estradiol from various proniosome formulations,” International Journal of Pharmaceutics, vol. 215, no. 1-2, pp. 91–99, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. T. M. Kalyankar, M. Khan, T. Nalanda Rangari, and D. Vijay Wagh, “Novel possibilities of development and therapeutic applications of liposomes,” Journal of Pharmacy Research, vol. 3, no. 8, pp. 1880–1884, 2010. View at Google Scholar