Table of Contents
ISRN Cell Biology
Volume 2012 (2012), Article ID 685852, 8 pages
http://dx.doi.org/10.5402/2012/685852
Review Article

Apoptosis: Reprogramming and the Fate of Mature Cells

Section on Clinical and Developmental Genomics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Received 9 January 2012; Accepted 14 February 2012

Academic Editors: D. Arnoult and R. Poon

Copyright © 2012 Hoi-Hung Cheung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. D. Schimmer, “Apoptosis in leukemia: from molecular pathways to targeted therapies,” Best Practice and Research: Clinical Haematology, vol. 21, no. 1, pp. 5–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. S.Y. Wong, “Apoptosis in cancer: from pathogenesis to treatment,” Journal of Experimental and Clinical Cancer Research, vol. 30, no. 1, 2011. View at Publisher · View at Google Scholar
  4. A. Russo, M. Terrasi, V. Agnese, D. Santini, and V. Bazan, “Apoptosis: a relevant tool for anticancer therapy,” Annals of Oncology, vol. 17, supplement 7, pp. vii115–vii123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. I. H. Song, Y. S. Kim, and T. H. Kim, “Role of apoptotic and necrotic cell death under physiologic conditions,” Journal of Biochemistry and Molecular Biology, vol. 41, no. 1, pp. 1–10, 2008. View at Google Scholar · View at Scopus
  6. J. E. Belizário, I. Alves, J. M. Occhiucci, M. Garay-Malpartida, and A. Sesso, “A mechanistic view of mitochondrial death decision pores,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 8, pp. 1011–1024, 2007. View at Google Scholar · View at Scopus
  7. Y. Fuchs and H. Steller, “Programmed cell death in animal development and disease,” Cell, vol. 147, no. 4, pp. 742–758, 2011. View at Publisher · View at Google Scholar
  8. N. Edison, D. Zuri, I. Maniv et al., “The IAP-antagonist ARTS initiates caspase activation upstream of cytochrome C and SMACDiablo,” Cell Death and Differentiation, vol. 19, no. 2, pp. 356–368, 2012. View at Publisher · View at Google Scholar
  9. K. H. Vousden and C. Prives, “Blinded by the light: the growing complexity of p53,” Cell, vol. 137, no. 3, pp. 413–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. P. Lane, “Cancer. p53, guardian of the genome,” Nature, vol. 358, no. 6381, pp. 15–16, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Zuckerman, K. Wolyniec, R. V. Sionov, S. Haupt, and Y. Haupt, “Tumour suppression by p53: the importance of apoptosis and cellular senescence,” Journal of Pathology, vol. 219, no. 1, pp. 3–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Yang, D. Wu, K. Luo, S. Wu, and P. Wu, “Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells,” Cancer Letters, vol. 276, no. 2, pp. 180–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Chipuk, T. Kuwana, L. Bouchier-Hayes et al., “Direct activation of bax by p53 mediates mitochondrial membrane permeabilization and apoptosis,” Science, vol. 303, no. 5660, pp. 1010–1014, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. P. Chao, R. Majeti, and I. L. Weissman, “Programmed cell removal: a new obstacle in the road to developing cancer,” Nature Reviews Cancer, vol. 12, no. 1, pp. 58–67, 2012. View at Publisher · View at Google Scholar
  15. D. V. Vujaklija, S. Sucic, T. Gulic, M. Dominovic, and D. Rukavina, “Cell death mechanisms at the maternal-fetal interface: insights into the role of granulysin,” Clinical and Developmental Immunology, vol. 2012, Article ID 180272, 8 pages, 2012. View at Publisher · View at Google Scholar
  16. I. Boumela, S. Assou, A. Aouacheria et al., “Involvement of BCL2 family members in the regulation of human oocyte and early embryo survival and death: gene expression and beyond,” Reproduction, vol. 141, no. 5, pp. 549–561, 2011. View at Publisher · View at Google Scholar
  17. J. Ramalho-Santos, S. Varum, S. Amaral, P. C. Mota, A. P. Sousa, and A. Amaral, “Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells,” Human Reproduction Update, vol. 15, no. 5, pp. 553–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Google Scholar
  19. A. Rufini and G. Melino, “Cell death pathology: the war against cancer,” Biochemical and Biophysical Research Communications, vol. 414, no. 3, pp. 445–450, 2011. View at Publisher · View at Google Scholar
  20. J. A. Thomson, “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Google Scholar · View at Scopus
  21. J. Yu and J. A. Thomson, “Pluripotent stem cell lines,” Genes and Development, vol. 22, no. 15, pp. 1987–1997, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. E. Murry and G. Keller, “Differentiation of embryonic stem cells toclinically relevant populations: lessons from embryonic development,” Cell, vol. 132, no. 4, pp. 661–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. J. Stambrook and E. D. Tichy, “Preservation of genomic integrity in mouse embryonic stem cells,” Advances in Experimental Medicine and Biology, vol. 695, pp. 59–75, 2010. View at Publisher · View at Google Scholar
  24. E. D. Tichy, “Mechanisms maintaining genomic integrity in embryonic stem cells and induced pluripotent stem cells,” Experimental Biology and Medicine, vol. 236, no. 9, pp. 987–996, 2011. View at Publisher · View at Google Scholar
  25. K. H. Lee, M. Li, A. M. Michalowski et al., “A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 69–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Qin, T. Yu, T. Qing et al., “Regulation of apoptosis and differentiation by p53 in human embryonic stem cells,” Journal of Biological Chemistry, vol. 282, no. 8, pp. 5842–5852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Solozobova and C. Blattner, “Regulation of p53 in embryonic stem cells,” Experimental Cell Research, vol. 316, no. 15, pp. 2434–2446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. B. T. Spike and G. M. Wahl, “P53, stem cells, and reprogramming: tumor suppression beyond guarding the genome,” Genes and Cancer, vol. 2, no. 4, pp. 404–419, 2011. View at Publisher · View at Google Scholar
  29. T. Zhao and Y. Xu, “p53 and stem cells: new developments and new concerns,” Trends in Cell Biology, vol. 20, no. 3, pp. 170–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Sarig and V. Rotter, “Can an iPS cell secure its genomic fidelity?” Cell Death & Differentiation, vol. 18, no. 5, pp. 743–744, 2011. View at Google Scholar
  31. M. Ohgushi and Y. Sasai, “Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states,” Trends in Cell Biology, vol. 21, no. 5, pp. 274–282, 2011. View at Publisher · View at Google Scholar
  32. K. Watanabe, M. Ueno, D. Kamiya et al., “A ROCK inhibitor permits survival of dissociated human embryonic stem cells,” Nature Biotechnology, vol. 25, no. 6, pp. 681–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Ohgushi, M. Matsumura, M. Eiraku et al., “Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells,” Cell Stem Cell, vol. 7, no. 2, pp. 225–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Xu, X. Zhu, H. S. Hahm et al., “Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 18, pp. 8129–8134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. L. A. Boyer, I. L. Tong, M. F. Cole et al., “Core transcriptional regulatory circuitry in human embryonic stem cells,” Cell, vol. 122, no. 6, pp. 947–956, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Liu, M. Lu, X. Tian, and Z. Han, “Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells,” Journal of Cellular Physiology, vol. 211, no. 2, pp. 279–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Stewart, M. Stojkovic, and M. Lako, “Mechanisms of self-renewal in human embryonic stem cells,” European Journal of Cancer, vol. 42, no. 9, pp. 1257–1272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Sumi, N. Tsuneyoshi, N. Nakatsuji, and H. Suemori, “Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc,” Oncogene, vol. 26, no. 38, pp. 5564–5576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Mayshar, U. Ben-David, N. Lavon et al., “Identification and classification of chromosomal aberrations in human induced pluripotent stem cells,” Cell Stem Cell, vol. 7, no. 4, pp. 521–531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Gore, Z. Li, H. -L. Fung et al., “Somatic coding mutations in human induced pluripotent stem cells,” Nature, vol. 471, no. 7336, pp. 63–67, 2011. View at Publisher · View at Google Scholar
  42. J. Hanna, K. Saha, B. Pando et al., “Direct cell reprogramming is a stochastic process amenable to acceleration,” Nature, vol. 462, no. 7273, pp. 595–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Zhao, X. Yin, H. Qin et al., “Two supporting factors greatly improve the efficiency of human IPSC generation,” Cell Stem Cell, vol. 3, no. 5, pp. 475–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Hong, K. Takahashi, T. Ichisaka et al., “Suppression of induced pluripotent stem cell generation by the p53-p21 pathway,” Nature, vol. 460, no. 7259, pp. 1132–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Kawamura, J. Suzuki, Y. V. Wang et al., “Linking the p53 tumour suppressor pathway to somatic cell reprogramming,” Nature, vol. 460, no. 7259, pp. 1140–1144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. R. M. Marión, K. Strati, H. Li et al., “A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity,” Nature, vol. 460, no. 7259, pp. 1149–1153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Utikal, J. M. Polo, M. Stadtfeld et al., “Immortalization eliminates a roadblock during cellular reprogramming into iPS cells,” Nature, vol. 460, no. 7259, pp. 1145–1148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Li, M. Collado, A. Villasante et al., “The Ink4/Arf locus is a barrier for iPS cell reprogramming,” Nature, vol. 460, no. 7259, pp. 1136–1139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Li, Z. He, J. Shen et al., “Apoptotic caspases regulate induction of iPSCs from human fibroblasts,” Cell Stem Cell, vol. 7, no. 4, pp. 508–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Plath and W. E. Lowry, “Progress in understanding reprogramming to the induced pluripotent state,” Nature Reviews Genetics, vol. 12, no. 4, pp. 253–265, 2011. View at Publisher · View at Google Scholar
  51. M. A. Esteban, T. Wang, B. Qin et al., “Vitamin C enhances the generation of mouse and human induced pluripotent stem cells,” Cell Stem Cell, vol. 6, no. 1, pp. 71–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Yoshida, K. Takahashi, K. Okita, T. Ichisaka, and S. Yamanaka, “Hypoxia enhances the generation of induced pluripotent stem cells,” Cell Stem Cell, vol. 5, no. 3, pp. 237–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Mah, Y. Wang, M. -C. Liao et al., “Molecular insights into reprogramming-initiation events mediated by the OSKM gene regulatory network,” PLoS One, vol. 6, no. 8, article e24351, 2011. View at Publisher · View at Google Scholar
  54. T. Wang, K. Chen, X. Zeng et al., “The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner,” Cell Stem Cell, vol. 9, no. 6, pp. 575–587, 2011. View at Publisher · View at Google Scholar
  55. T. Chen, L. Shen, J. Yu et al., “Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells,” Aging Cell, vol. 10, no. 5, pp. 908–911, 2011. View at Publisher · View at Google Scholar
  56. J. A. Menendez, L. Vellon, C. Oliveras-Ferraros, S. Cufí, and A. Vazquez-Martin, “mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging,” Cell Cycle, vol. 10, no. 21, pp. 3658–3677, 2011. View at Publisher · View at Google Scholar
  57. A. Banito, S. T. Rashid, J. C. Acosta et al., “Senescence impairs successful reprogramming to pluripotent stem cells,” Genes and Development, vol. 23, no. 18, pp. 2134–2139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. R. M. Marion, K. Strati, H. Li et al., “Telomeres Acquire Embryonic Stem Cell Characteristics in Induced Pluripotent Stem Cells,” Cell Stem Cell, vol. 4, no. 2, pp. 141–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. T. Dimos, K. T. Rodolfa, K. K. Niakan et al., “Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons,” Science, vol. 321, no. 5893, pp. 1218–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Lapasset, O. Milhavet, A. Prieur et al., “Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state,” Genes and Development, vol. 25, no. 21, pp. 2248–2253, 2011. View at Publisher · View at Google Scholar
  61. P. R. Musich and Y. Zou, “DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome,” Biochemical Society Transactions, vol. 39, no. 6, pp. 1764–1769, 2011. View at Publisher · View at Google Scholar
  62. E. K. Benson, S. W. Lee, and S. A. Aaronson, “Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence,” Journal of Cell Science, vol. 123, no. 15, pp. 2605–2612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Zhang, Q. Lian, G. Zhu et al., “A Human iPSC model of hutchinson gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects,” Cell Stem Cell, vol. 8, no. 1, pp. 31–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. G. H. Liu, B. Z. Barkho, S. Ruiz et al., “Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome,” Nature, vol. 472, no. 7342, pp. 221–227, 2011. View at Publisher · View at Google Scholar
  65. J. C. Ho, T. Zhou, W. H. Lai et al., “Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C,” Aging, vol. 3, no. 4, pp. 380–390, 2011. View at Google Scholar
  66. L. Domínguez-Gerpe and D. Araújo-Vilar, “Prematurely aged children: molecular alterations leading to Hutchinson-Gilford progeria and Werner syndromes,” Current aging science, vol. 1, no. 3, pp. 202–212, 2008. View at Google Scholar · View at Scopus
  67. U. Ben-David and N. Benvenisty, “The tumorigenicity of human embryonic and induced pluripotent stem cells,” Nature Reviews Cancer, vol. 11, no. 4, pp. 268–277, 2011. View at Publisher · View at Google Scholar
  68. F. Anokye-Danso, C. M. Trivedi, D. Juhr et al., “Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency,” Cell Stem Cell, vol. 8, no. 4, pp. 376–388, 2011. View at Publisher · View at Google Scholar