Table of Contents
ISRN Molecular Biology
Volume 2012 (2012), Article ID 708203, 15 pages
http://dx.doi.org/10.5402/2012/708203
Review Article

Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts

School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA

Received 2 October 2012; Accepted 22 October 2012

Academic Editors: H.-C. Lee and T.-L. Lee

Copyright © 2012 Rajeev Misra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Fairman, N. Noinaj, and S. K. Buchanan, “The structural biology of β-barrel membrane proteins: a summary of recent reports,” Current Opinion in Structural Biology, vol. 21, no. 4, pp. 523–531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Nakae, “Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes,” Biochemical and Biophysical Research Communications, vol. 71, no. 3, pp. 877–884, 1976. View at Google Scholar · View at Scopus
  3. R. Misra, “First glimpse of the crystal structure of YaeT's POTRA domains,” American Chemical Society Chemical Biology, vol. 2, no. 10, pp. 649–651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. L. Hagan, T. J. Silhavy, and D. Kahne, “β-barrel membrane protein assembly by the bam complex,” Annual Review of Biochemistry, vol. 80, no. 1, pp. 189–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. D. P. Ricci and T. J. Silhavy, “The Bam machine: a molecular cooper,” Biochimica et Biophysica Acta, vol. 1818, no. 4, pp. 1067–1084, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. K. H. Kim, S. Aulakh, and M. Paetzel, “The bacterial outer membrane β-barrel assembly machinery,” Protein Science, vol. 21, no. 6, pp. 751–768, 2012. View at Publisher · View at Google Scholar
  7. M. P. Bos, B. Tefsen, J. Geurtsen, and J. Tommassen, “Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9417–9422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Bennion, E. S. Charlson, E. Coon, and R. Misra, “Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli,” Molecular Microbiology, vol. 77, no. 5, pp. 1153–1171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Ieva and H. D. Bernstein, “Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 45, pp. 19120–19125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Schmidt, N. Pfanner, and C. Meisinger, “Mitochondrial protein import: from proteomics to functional mechanisms,” Nature Reviews Molecular Cell Biology, vol. 11, no. 9, pp. 655–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Andrès, B. Agne, and F. Kessler, “The TOC complex: preprotein gateway to the chloroplast,” Biochimica et Biophysica Acta, vol. 1803, no. 6, pp. 715–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Pfanner, N. Wiedemann, C. Meisinger, and T. Lithgow, “Assembling the mitochondrial outer membrane,” Nature Structural and Molecular Biology, vol. 11, no. 11, pp. 1044–1048, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. M. Walther, D. Rapaport, and J. Tommassen, “Biogenesis of β-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence,” Cellular and Molecular Life Sciences, vol. 66, no. 17, pp. 2789–2804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Hsu and K. Inoue, “Two evolutionarily conserved essential β-barrel proteins in the chloroplast outer envelope membrane,” Bioscience Trends, vol. 3, no. 5, pp. 168–178, 2009. View at Google Scholar · View at Scopus
  15. T. Cavalier-Smith, “Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium,” Proceedings of Royal Society Biological Sciences, vol. 273, no. 1596, pp. 1943–1952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Archibald, “The puzzle of plastid esvolution,” Current Biology, vol. 19, no. 2, pp. R81–R88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Jiang, J. Tong, K. S. Tan, and K. Gabriel, “From evolution to pathogenesis: the link between β-barrel assembly machineries in the outer membrane of mitochondria and Gram-negative bacteria,” International Journal of Molecular Sciences, vol. 13, no. 7, pp. 8038–8050, 2012. View at Publisher · View at Google Scholar
  18. K. Eckart, L. Eichacker, K. Sohrt, E. Schleiff, L. Heins, and J. Soll, “A Toc75-like protein import channel is abundant in chloroplasts,” European Molecular Biology Organization Reports, vol. 3, no. 6, pp. 557–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Kozjak, N. Wiedemann, D. Milenkovic et al., “An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane,” Journal of Biological Chemistry, vol. 278, no. 49, pp. 48520–48523, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Paschen, T. Waizenegger, T. Stan et al., “Evolutionary conservation of biogenesis of β-barrel membrane proteins,” Nature, vol. 426, no. 6968, pp. 862–866, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Voulhoux, M. P. Bos, J. Geurtsen, M. Mols, and J. Tommassen, “Role of a highly conserved bacterial protein in outer membrane protein assembly,” Science, vol. 299, no. 5604, pp. 262–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Gentle, K. Gabriel, P. Beech, R. Waller, and T. Lithgow, “The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria,” Journal of Cell Biology, vol. 164, no. 1, pp. 19–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Inoue and D. Potter, “The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms,” The Plant Journal, vol. 39, no. 3, pp. 354–365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Wu, J. Malinverni, N. Ruiz, S. Kim, T. J. Silhavy, and D. Kahne, “Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli,” Cell, vol. 121, no. 2, pp. 235–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Bölter, J. Soll, A. Schulz, S. Hinnah, and R. Wagner, “Origin of a chloroplast protein importer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15831–15836, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Reumann, J. Davila-Aponte, and K. Keegstra, “The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 784–789, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Patel, S. C. Hsu, J. Bédard, K. Inoue, and P. Jarvis, “The Omp85-related chloroplast outer envelope protein OEP80 is essential for viability in Arabidopsis,” Plant Physiology, vol. 148, no. 1, pp. 235–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. B. A. Sampson, R. Misra, and S. A. Benson, “Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability,” Genetics, vol. 122, no. 3, pp. 491–501, 1989. View at Google Scholar · View at Scopus
  29. U. S. Eggert, N. Ruiz, B. V. Falcone et al., “Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin,” Science, vol. 294, no. 5541, pp. 361–364, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J. G. Sklar, T. Wu, L. S. Gronenberg, J. C. Malinverni, D. Kahne, and T. J. Silhavy, “Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 15, pp. 6400–6405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Braun and T. J. Silhavy, “Imp/OstA is required for cell envelope biogenesis in Escherichia coli,” Molecular Microbiology, vol. 45, no. 5, pp. 1289–1302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Ruiz, D. Kahne, and T. J. Silhavy, “Transport of lipopolysaccharide across the cell envelope: the long road of discovery,” Nature Reviews Microbiology, vol. 7, no. 9, pp. 677–683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. M. Galloway and C. R. H. Raetz, “A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis,” Journal of Biological Chemistry, vol. 265, no. 11, pp. 6394–6402, 1990. View at Google Scholar · View at Scopus
  34. L. Steeghs, R. den Hartog, A. den Boer, B. Zomer, P. Roholl, and P. van der Ley, “Meningitis bacterium is viable without endotoxin,” Nature, vol. 392, no. 6675, pp. 449–450, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Tellez Jr. and R. Misra, “Substitutions in the BamA β-barrel domain overcome the conditional lethal phenotype of a ΔbamBΔbamE strain of Escherichia coli,” Journal of Bacteriology, vol. 194, no. 2, pp. 317–324, 2012. View at Google Scholar
  36. K. Anwari, C. T. Webb, S. Poggio et al., “The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex,” Molecular Microbiology, vol. 84, no. 5, pp. 832–844, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. W. T. Doerrler and C. R. H. Raetz, “Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant,” Journal of Biological Chemistry, vol. 280, no. 30, pp. 27679–27687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Werner and R. Misra, “YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli,” Molecular Microbiology, vol. 57, no. 5, pp. 1450–1459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. C. Malinverni, J. Werner, S. Kim et al., “YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli,” Molecular Microbiology, vol. 61, no. 1, pp. 151–164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. E. B. Volokhina, F. Beckers, J. Tommassen, and M. P. Bos, “The β-barrel outer membrane protein assembly complex of Neisseria meningitidis,” Journal of Bacteriology, vol. 191, no. 22, pp. 7074–7085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. C. T. Webb, E. Heinz, and T. Lithgow, “Evolution of the β-barrel assembly machinery,” Trends in Microbiology. In press. View at Publisher · View at Google Scholar
  42. S. Gratzer, T. Lithgow, R. E. Bauer et al., “Mas37p, a novel receptor subunit for protein import into mitochondria,” Journal of Cell Biology, vol. 129, no. 1, pp. 25–34, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Pfanner and M. Meijer, “Mitochondrial biogenesis: the Tom and Tim machine,” Current Biology, vol. 7, no. 2, pp. R100–R103, 1997. View at Google Scholar · View at Scopus
  44. M. T. Ryan, H. Müller, and N. Pfanner, “Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane,” Journal of Biological Chemistry, vol. 274, no. 29, pp. 20619–20627, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Wiedemann, V. Kozjak, A. Chacinska et al., “Machinery for protein sorting and assembly in the mitochondrial outer membrane,” Nature, vol. 424, no. 6948, pp. 565–571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Milenkovic, V. Kozjak, N. Wiedemann et al., “Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability,” Journal of Biological Chemistry, vol. 279, no. 21, pp. 22781–22785, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Waizenegger, S. J. Habib, M. Lech et al., “Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria,” European Molecular Biology Organization Reports, vol. 5, no. 7, pp. 704–709, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Ishikawa, H. Yamamoto, Y. Tamura, K. Moritoh, and T. Endo, “Two novel proteins in the mitochondrial outer membrane mediate β-barrel protein assembly,” Journal of Cell Biology, vol. 166, no. 5, pp. 621–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Meisinger, M. Rissler, A. Chacinska et al., “The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane,” Developmental Cell, vol. 7, no. 1, pp. 61–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. L. F. Sogo and M. P. Yaffe, “Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane,” Journal of Cell Biology, vol. 126, no. 6, pp. 1361–1373, 1994. View at Google Scholar · View at Scopus
  51. L. Sánchez-Pulido, D. Devos, S. Genevrois, M. Vicente, and A. Valencia, “POTRA: a conserved domain in the FtsQ family and a class of β-barrel outer membrane proteins,” Trends in Biochemical Sciences, vol. 28, no. 10, pp. 523–526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Moslavac, O. Mirus, R. Bredemeier, J. Soll, A. von Haeseler, and E. Schleiff, “Conserved pore-forming regions in polypeptide-transporting proteins,” FEBS Journal, vol. 272, no. 6, pp. 1367–1378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. I. E. Gentle, L. Burri, and T. Lithgow, “Molecular architecture and function of the Omp85 family of proteins,” Molecular Microbiology, vol. 58, no. 5, pp. 1216–1225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Jacob-Dubuisson, V. Villeret, B. Clantin, A. S. Delattre, and N. Saint, “First structural insights into the TpsB/Omp85 superfamily,” Biological Chemistry, vol. 390, no. 8, pp. 675–684, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Clantin, A. S. Delattre, P. Rucktooa et al., “Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily,” Science, vol. 317, no. 5840, pp. 957–961, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. S. Delattre, B. Clantin, N. Saint, C. Locht, V. Villeret, and F. Jacob-Dubuisson, “Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily,” FEBS Journal, vol. 277, no. 22, pp. 4755–4765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Leonard-Rivera and R. Misra, “Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including that of BamA itself,” Journal of Bacteriology, vol. 194, no. 17, pp. 4662–4668, 2012. View at Publisher · View at Google Scholar
  58. J. F. Stegmeier and C. Andersen, “Characterization of pores formed by YaeT (Omp85) from Escherichia coli,” Journal of Biochemistry, vol. 140, no. 2, pp. 275–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. V. Robert, E. B. Volokhina, F. Senf, M. P. Bos, P. van Gelder, and J. Tommassen, “Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif,” PLoS Biology, vol. 4, no. 11, pp. 1984–1995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Bredemeier, T. Schlegel, F. Ertel et al., “Functional and phylogenetic properties of the pore-forming β-barrel transporters of the Omp85 family,” Journal of Biological Chemistry, vol. 282, no. 3, pp. 1882–1890, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Kutik, D. Stojanovski, L. Becker et al., “Dissecting membrane insertion ofmitochondrial β-barrel proteins,” Cell, vol. 132, no. 6, pp. 1011–1024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Nesper, A. Brosig, P. Ringler et al., “Omp85Tt from Thermus thermophilus HB27: an ancestral type of the Omp85 protein family,” Journal of Bacteriology, vol. 190, no. 13, pp. 4568–4575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Arnold, K. Zeth, and D. Linke, “Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition,” Journal of Biological Chemistry, vol. 285, no. 23, pp. 18003–18015, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. U. Ahting, M. Thieffry, H. Engelhardt, R. Hegerl, W. Neupert, and S. Nussberger, “Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria,” Journal of Cell Biology, vol. 153, no. 6, pp. 1151–1160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Kim, J. C. Malinverni, P. Sliz, T. J. Silhavy, S. C. Harrison, and D. Kahne, “Structure and function of an essential component of the outer membrane protein assembly machine,” Science, vol. 317, no. 5840, pp. 961–964, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. M. P. Bos, V. Robert, and J. Tommassen, “Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain,” European Molecular Biology Organization Reports, vol. 8, no. 12, pp. 1149–1154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. E. B. Volokhina, J. Grijpstra, M. Stork, I. Schilders, J. Tommassen, and M. P. Bos, “Role of the periplasmic chaperones Skp, SurA, and DegQ in outer membrane protein biogenesis in Neisseria meningitidis,” Journal of Bacteriology, vol. 193, no. 7, pp. 1612–1621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Ried, I. Hindennach, and U. Henning, “Role of lipopolysaccharide in assembly of Escherichia coli outer membrane proteins OmpA, OmpC, and OmpF,” Journal of Bacteriology, vol. 172, no. 10, pp. 6048–6053, 1990. View at Google Scholar · View at Scopus
  69. M. W. Laird, A. W. Kloser, and R. Misra, “Assembly of LamB and OmpF in deep rough lipopolysaccharide mutants of Escherichia coli K-12,” Journal of Bacteriology, vol. 176, no. 8, pp. 2259–2264, 1994. View at Google Scholar · View at Scopus
  70. S. J. Habib, T. Waizenegger, A. Niewienda, S. A. Paschen, W. Neupert, and D. Rapaport, “The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins,” Journal of Cell Biology, vol. 176, no. 1, pp. 77–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. W. C. Wimley, “The versatile β-barrel membrane protein,” Current Opinion in Structural Biology, vol. 13, no. 4, pp. 404–411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Remmert, D. Linke, A. N. Lupas, and J. Söding, “HHomp—prediction and classification of outer membrane proteins,” Nucleic Acids Research, vol. 37, no. 2, pp. W446–W451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Koenig, O. Mirus, R. Haarmann et al., “Conserved properties of polypeptide transport-associated (POTRA) domains derived from cyanobacterial Omp85,” Journal of Biological Chemistry, vol. 285, no. 23, pp. 18016–18024, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Ruiz, B. Falcone, D. Kahne, and T. J. Silhavy, “Chemical conditionality: a genetic strategy to probe organelle assembly,” Cell, vol. 121, no. 2, pp. 307–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. E. S. Charlson, J. N. Werner, and R. Misra, “Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide,” Journal of Bacteriology, vol. 188, no. 20, pp. 7186–7194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Workman, K. Heide, N. Giuliano et al., “Genetic, biochemical, and molecular characterization of the polypeptide transport-associated domain of Escherichia coli BamA,” Journal of Bacteriology, vol. 194, no. 13, pp. 3512–3521, 2012. View at Publisher · View at Google Scholar
  77. D. Vertommen, N. Ruiz, P. Leverrier, T. J. Silhavy, and J. F. Collet, “Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics,” Proteomics, vol. 9, no. 9, pp. 2432–2443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. T. J. Knowles, M. Jeeves, S. Bobat et al., “Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes,” Molecular Microbiology, vol. 68, no. 5, pp. 1216–1227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. D. A. Stroud, T. Becker, J. Qiu et al., “Biogenesisof mitochondrial β-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex,” Molecular Biology of the Cell, vol. 22, no. 16, pp. 2823–2833, 2011. View at Publisher · View at Google Scholar
  80. M. S. Sommer, B. Daum, L. E. Gross et al., “Chloroplast Omp85 proteins change orientation during evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 33, pp. 13841–13846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. C. T. Webb, J. Selkrig, A. J. Perry, N. Noinaj, S. K. Buchanan, and T. Lithgow, “Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC,” Journal of Molecular Biology, vol. 422, no. 4, pp. 545–555, 2012. View at Publisher · View at Google Scholar
  82. M. Fussenegger, D. Facius, J. Meier, and T. F. Meyer, “A novel peptidoglycan-linked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae,” Molecular Microbiology, vol. 19, no. 5, pp. 1095–1105, 1996. View at Google Scholar · View at Scopus
  83. C. Onufryk, M. L. Crouch, F. C. Fang, and C. A. Gross, “Characterization of six lipoproteins in the σe regulon,” Journal of Bacteriology, vol. 187, no. 13, pp. 4552–4561, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. N. W. Rigel, J. Schwalm, D. P. Ricci, and T. J. Silhavy, “BamE modulates the Escherichia coliβ-barrel assembly machine component BamA,” Journal of Bacteriology, vol. 194, no. 5, pp. 1002–1008, 2012. View at Publisher · View at Google Scholar
  85. C. M. Sandoval, S. L. Baker, K. Jansen, S. I. Metzner, and M. C. Sousa, “Crystal structure of BamD: an essential component of the β-barrel assembly machinery of gram-negative bacteria,” Journal of Molecular Biology, vol. 409, no. 3, pp. 348–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Dong, H. F. Hou, X. Yang, Y. Q. Shen, and Y. H. Dong, “Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly,” Acta Crystallography, vol. 68, no. 2, pp. 95–101, 2012. View at Google Scholar
  87. R. Albrecht and K. Zeth, “Structural basis of outer membrane protein biogenesis in bacteria,” Journal of Biological Chemistry, vol. 286, no. 31, pp. 27792–27803, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. L. D. D'Andrea and L. Regan, “TPR proteins: the versatile helix,” Trends in Biochemical Sciences, vol. 28, no. 12, pp. 655–662, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. K. H. Kim, S. Aulakh, and M. Paetzel, “Crystal structure of β-barrel assembly machinery BamCD protein complex,” Journal of Biological Chemistry, vol. 286, no. 45, pp. 39116–39121, 2011. View at Publisher · View at Google Scholar
  90. C. L. Hagan, S. Kim, and D. Kahne, “Reconstitution of outer membrane protein assembly from purified components,” Science, vol. 328, no. 5980, pp. 890–892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. D. P. Ricci, C. L. Hagan, D. Kahne, and T. J. Silhavy, “Activation of the Escherichia coliβ-barrel assembly machine (Bam) is required for essential components to interact properly with substrate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 9, pp. 3487–3491, 2012. View at Publisher · View at Google Scholar
  92. P. Vuong, D. Bennion, J. Mantei, D. Frost, and R. Misra, “Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry,” Journal of Bacteriology, vol. 190, no. 5, pp. 1507–1517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Heuck, A. Schleiffer, and T. Clausen, “Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins,” Journal of Molecular Biology, vol. 406, no. 5, pp. 659–666, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. K. H. Kim and M. Paetzel, “Crystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex,” Journal of Molecular Biology, vol. 406, no. 5, pp. 667–678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. N. Noinaj, J. W. Fairman, and S. K. Buchanan, “The crystal structure of BamB suggests interactions with BamA and its role within the BAM complex,” Journal of Molecular Biology, vol. 407, no. 2, pp. 248–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. T. J. Knowles, D. F. Browning, M. Jeeves et al., “Structure and function of BamE within the outer membrane and the β-barrel assembly machine,” European Molecular Biology Organization Reports, vol. 12, no. 2, pp. 123–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. C. U. Stirnimann, E. Petsalaki, R. B. Russell, and C. W. Müller, “WD40 proteins propel cellular networks,” Trends in Biochemical Sciences, vol. 35, no. 10, pp. 565–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Z. Gatzeva-Topalova, T. A. Walton, and M. C. Sousa, “Crystal structure of YaeT: conformational flexibility and substrate recognition,” Structure, vol. 16, no. 12, pp. 1873–1881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. C. L. Hagan and D. Kahne, “The reconstitution of Escherichia coli Bam complex catalyzes multiple rounds of β-barrel assembly,” Biochemistry, vol. 50, no. 35, pp. 7444–7446, 2011. View at Publisher · View at Google Scholar
  100. R. Niedenthal, L. Riles, U. Güldener, S. Klein, M. Johnston, and J. H. Hegemann, “Systematic analysis of S. cerevisiae chromosome VIII genes,” Yeast, vol. 15, no. 16, pp. 1775–1796, 1999. View at Google Scholar · View at Scopus
  101. N. C. Chan and T. Lithgow, “The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis,” Molecular Biology of the Cell, vol. 19, no. 1, pp. 126–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. N. Wiedemann, K. N. Truscott, S. Pfannschmidt, B. Guiard, C. Meisinger, and N. Pfanner, “Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: Intermembrane space components are involved in an early stage of the assembly pathway,” Journal of Biological Chemistry, vol. 279, no. 18, pp. 18188–18194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Model, C. Meisinger, T. Prinz et al., “Multistep assembly of the protein import channel of the mitochondrial outer membrane,” Nature Structural Biology, vol. 8, no. 4, pp. 361–370, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. B. Kornmann, E. Currie, S. R. Collins et al., “An ER-mitochondria tethering complex revealed by a synthetic biology screen,” Science, vol. 325, no. 5939, pp. 477–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. K. Yamano, S. Tanaka-Yamano, and T. Endo, “Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40,” European Molecular Biology Organization Reports, vol. 11, no. 3, pp. 187–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Kouranov, X. Chen, B. Fuks, and D. J. Schnell, “Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane,” Journal of Cell Biology, vol. 143, no. 4, pp. 991–1002, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Tripp, A. Hahn, P. Koenig et al., “Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria,” Journal of Biological Chemistry, vol. 287, no. 29, pp. 24164–24173, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. S. W. Lazar and R. Kolter, “SurA assists the folding of Escherichia coli outer membrane proteins,” Journal of Bacteriology, vol. 178, no. 6, pp. 1770–1773, 1996. View at Google Scholar · View at Scopus
  109. P. E. Rouvière and C. A. Gross, “SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins,” Genes and Development, vol. 10, no. 24, pp. 3170–3182, 1996. View at Google Scholar · View at Scopus
  110. J. G. Sklar, T. Wu, D. Kahne, and T. J. Silhavy, “Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli,” Genes and Development, vol. 21, no. 19, pp. 2473–2484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Behrens-Kneip, “The role of SurA factor in outer membrane protein transport and virulence,” International Journal of Medical Microbiology, vol. 300, no. 7, pp. 421–428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Werner, A. M. Augustus, and R. Misra, “Assembly of TolC, a structurally unique and multifunctional outer membrane protein of Escherichia coli K-12,” Journal of Bacteriology, vol. 185, no. 22, pp. 6540–6547, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Masi, G. Duret, A. H. Delcour, and R. Misra, “Folding and trimerization of signal sequence-less mature TolC in the cytoplasm of Escherichia coli,” Microbiology, vol. 155, no. 6, pp. 1847–1857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. N. Bolender, A. Sickmann, R. Wagner, C. Meisinger, and N. Pfanner, “Multiple pathways for sorting mitochondrial precursor proteins,” European Molecular Biology Organization Reports, vol. 9, no. 1, pp. 42–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. H. Remaut and G. Waksman, “Protein-protein interaction through β-strand addition,” Trends in Biochemical Sciences, vol. 31, no. 8, pp. 436–444, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. A. R. Ureta, R. G. Endres, N. S. Wingreen, and T. J. Silhavy, “Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment,” Journal of Bacteriology, vol. 189, no. 2, pp. 446–454, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. T. Ulrich, L. E. Gross, M. S. Sommer, E. Schleiff, and D. Rapaport, “Chloroplast β-barrel proteins are assembled into the mitochondrial outer membrane in a process that depends on the TOM and TOB complexes,” Journal of Biological Chemistry, vol. 287, no. 33, pp. 27467–27479, 2012. View at Publisher · View at Google Scholar
  118. D. Stojanovski, B. Guiard, V. Kozjak-Pavlovic, N. Pfanner, and C. Meisinger, “Alternative function for the mitochondrial SAM complex in biogenesis of α-helical TOM proteins,” Journal of Cell Biology, vol. 179, no. 5, pp. 881–893, 2007. View at Google Scholar
  119. L. K. Tamm, H. Hong, and B. Liang, “Folding and assembly of β-barrel membrane proteins,” Biochimica et Biophysica Acta, vol. 1666, no. 1-2, pp. 250–263, 2004. View at Publisher · View at Google Scholar · View at Scopus