Table of Contents
ISRN Spectroscopy
Volume 2012, Article ID 712837, 7 pages
http://dx.doi.org/10.5402/2012/712837
Research Article

Characterization of Biochar Properties Affected by Different Pyrolysis Temperatures Using Visible-Near-Infrared Spectroscopy

1College of Information Engineering, Zhejiang University of Technology, Hangzhou 310032, China
2School of Biosystems Engineering and Food Sciences, Zhejiang University, Hangzhou 310058, China

Received 15 October 2012; Accepted 2 November 2012

Academic Editors: P. Johansson and S. Prati

Copyright © 2012 Haiqing Yang and Kuichuan Sheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Lehmann, “A handful of carbon,” Nature, vol. 447, no. 7141, pp. 143–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Lehmann, “Bio-energy in the black,” Frontiers in Ecology and the Environment, vol. 5, no. 7, pp. 381–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Sanderson, F. Agblevor, M. Collins, and D. K. Johnson, “Compositional analysis of biomass feedstocks by near infrared reflectance spectroscopy,” Biomass and Bioenergy, vol. 11, no. 5, pp. 365–370, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Labbé, S.-H. Lee, H.-W. Cho, M. K. Jeong, and N. André, “Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods,” Bioresource Technology, vol. 99, no. 17, pp. 8445–8452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. G. Allison, C. Morris, E. Hodgson et al., “Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy,” Bioresource Technology, vol. 100, no. 24, pp. 6428–6433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Nkansah, B. Dawson-Andoh, and J. Slahor, “Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: part 1 yellow-poplar (Liriodendron tulipifera L.),” Bioresource Technology, vol. 101, no. 12, pp. 4570–4576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. C. Fagan, C. D. Everard, and K. McDonnell, “Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy,” Bioresource Technology, vol. 102, no. 8, pp. 5200–5206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yang, B. Kuang, and A. M. Mouazen, “Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction,” European Journal of Soil Science, vol. 63, no. 3, pp. 410–420, 2012. View at Google Scholar
  9. H. Yang and A. M. Mouazen, “Vis/near and mid-infrared spectroscopy for predicting soil N and C at a farm scale,” in Infrared Spectroscopy-Life and Biomedical Sciences, T. Theophanides, Ed., pp. 185–210, Intech Press, Rijeka, Croatia, 2012. View at Google Scholar
  10. R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma, vol. 131, no. 1-2, pp. 59–75, 2006. View at Google Scholar
  11. H. Yang, B. Kuang, and A. M. Mouazen, “In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum) fruits using fiber-optic visible-near-infrared (Vis-NIR) spectroscopy,” Applied Spectroscopy, vol. 65, no. 8, pp. 931–938, 2011. View at Google Scholar
  12. R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The Mahalanobis distance,” Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 1, pp. 1–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Garcia-Perez, X. S. Wang, J. Shen et al., “Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products,” Industrial and Engineering Chemistry Research, vol. 47, no. 6, pp. 1846–1854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. H. Kim, J. Y. Kim, T. S. Cho, and J. W. Choi, “Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida),” Bioresource Technology, vol. 118, pp. 158–162, 2012. View at Google Scholar
  15. M. Keiluweit, P. S. Nico, M. Johnson, and M. Kleber, “Dynamic molecular structure of plant biomass-derived black carbon (biochar),” Environmental Science and Technology, vol. 44, no. 4, pp. 1247–1253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Q. Chen, H. P. Yang, X. H. Wang, S. H. Zhang, and H. P. Chen, “Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature,” Bioresource Technology, vol. 107, pp. 411–418, 2012. View at Google Scholar
  17. S. T. Thangalazhy-Gopakumar, S. Adhikari, H. Ravindran et al., “Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor,” Bioresource Technology, vol. 101, no. 21, pp. 8389–8395, 2010. View at Google Scholar
  18. A. Demirbas, “Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues,” Journal of Analytical and Applied Pyrolysis, vol. 72, no. 2, pp. 243–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Abdullah and H. Wu, “Biochar as a fuel: 1. properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions,” Energy & Fuels, vol. 23, no. 8, pp. 4174–4181, 2009. View at Google Scholar
  20. X. Peng, L. L. Ye, C. H. Wang, H. Zhou, and B. Sun, “Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China,” Soil and Tillage Research, vol. 112, no. 2, pp. 159–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. B. B. Uzun, A. E. Pütün, and E. Pütün, “Composition of products obtained via fast pyrolysis of olive-oil residue: effect of pyrolysis temperature,” Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1-2, pp. 147–153, 2007. View at Publisher · View at Google Scholar · View at Scopus