Table of Contents
ISRN Condensed Matter Physics
Volume 2012, Article ID 732973, 21 pages
http://dx.doi.org/10.5402/2012/732973
Review Article

Electrodynamics of Bechgaard Salts: Optical Properties of One-Dimensional Metals

1. Physikaliisches Insitut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

Received 21 June 2012; Accepted 10 July 2012

Academic Editors: H. Eisaki, I. Galanakis, H. D. Hochheimer, C. Homes, Y. Ohta, and J. Tempere

Copyright © 2012 Martin Dressel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. H. Lieb and D. C. Mattis, Eds., Mathematical Physics in One Dimension, Academic Press, New York, NY, USA, 1966.
  2. T. Giamarchi, Quantum Physics in One Dimen-Sion, Oxford University Press, Oxford, UK, 2004.
  3. C. S. Jacobsen, D. B. Tanner, and K. Bechgaard, “Dimensionality crossover in the organic superconductor tetramethyltetraselenafulvalene hexafluorophosphate [(TMTSF)2PF6],” Physical Review Letters, vol. 46, no. 17, pp. 1142–1145, 1981. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Brüuesch, “Optical properties of the one-dimensional Pt complex compounds,” in One-Dimensional Conductors, H. G. Schuster, Ed., p. 194, Springer, Berlin, Germany, 1975. View at Google Scholar
  5. P. Brüesch, S. Strässler, and H. R. Zeller, “Fluctuations and order in a one-dimensional system. A spectroscopical study of the Peierls transition in K2[Pt(CN)4]Br0.03·3H2O,” Physical Review B, vol. 12, no. 1, pp. 219–225, 1975. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Basista, D. A. Bonn, T. Timusk, J. Voit, D. Jérome, and K. Bechgaard, “Far-infrared optical properties of tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ),” Physical Review B, vol. 42, no. 7, pp. 4088–4099, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kagoshima, H. Nagasawa, and T. Sambongi, One-Dimensional Conductors, vol. 72 of Springer Series in Solid-State Sciences, Spinger, Berlin, Germany, 1989.
  8. H. R. Zeller, “Electronic properties of one-dimensional solid state systems,” in Festkörperprobleme (Advances in Solid State Physics), H. J. Queisser, Ed., vol. 13, p. 31, Pergamon Press, New York, NY, USA, 1973. View at Google Scholar
  9. H. R. Zeller, “Electrical transport and spectroscopical studies of the Peierls transitionK2[Pt(CN)4]Br0.03·3H2O,” in Low Dimensional Cooperative Phenomena, H. J. Keller, Ed., pp. 215–233, Plenum Press, New York, NY, USA, 1975. View at Google Scholar
  10. M. Dressel and G. Grüner, Electrodynamics of Solids, Cambridge University Press, Cambridge, UK, 2002.
  11. O. Klein, S. Donovan, M. Dressel, and G. Grüner, “Microwave cavity perturbation technique: part I: principles,” International Journal of Infrared and Millimeter Waves, vol. 14, no. 12, pp. 2423–2457, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Donovan, O. Klein, M. Dressel, K. Holczer, and G. Grüner, “Microwave cavity perturbation technique: part II: experimental scheme,” International Journal of Infrared and Millimeter Waves, vol. 14, no. 12, pp. 2459–2487, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Dressel, S. Donovan, O. Klein, and G. Grüner, “Microwave cavity perturbation technique: part III: applications,” International Journal of Infrared and Millimeter Waves, vol. 14, no. 12, pp. 2489–2517, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Schwartz, M. Dressel, A. Blank et al., “Resonant techniques for studying the complex electrodynamic response of conducting solids in the millimeter and submillimeter wave spectral range,” Review of Scientific Instruments, vol. 66, no. 4, pp. 2943–2953, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Dressel, O. Klein, S. Donovan, and G. Grüner, “High frequency resonant techniques for studying the complex electrodynamic response in solids,” Ferroelectrics, vol. 176, no. 1–4, pp. 285–308, 1996. View at Google Scholar · View at Scopus
  16. B. P. Gorshunov, A. Volkov, I. E. Spektor et al., “Terahertz BWO-spectrosopy,” International Journal of Infrared and Millimeter Waves, vol. 26, no. 9, pp. 1217–1240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, and A. J. Heeger, “Superconducting fluctuations and the peierls instability in an organic solid,” Solid State Communications, vol. 12, no. 11, pp. 1125–1132, 1973. View at Google Scholar · View at Scopus
  18. M. J. Cohen, L. B. Coleman, A. F. Garito, and A. J. Heeger, “Electrical conductivity of tetrathiofulvalinium tetracyanoquinodimethan (TTF) (TCNQ),” Physical Review B, vol. 10, no. 4, pp. 1298–1307, 1974. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Jérome and H. J. Schulz, “Organic conductors and superconductors,” Advances in Physics, vol. 31, no. 4, pp. 299–490, 1982. View at Google Scholar · View at Scopus
  20. L. B. Coleman, C. R. Fincher, A . F. Garito, and A. J. Heeger, “Far-infrared single crystal studies of TTF-TCNQ,” Physica Status Solidi (b), vol. 75, no. 1, pp. 239–246, 1976. View at Publisher · View at Google Scholar
  21. M. J. Cohen, L. B. Coleman, A. F. Garito, and A. J. Heeger, “Electronic properties of tetrathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ),” Physical Review B, vol. 13, no. 11, pp. 5111–5116, 1976. View at Publisher · View at Google Scholar · View at Scopus
  22. G. A. Thomas, D. E. Schafer, F. Wudl et al., “Electrical conductivity of tetrathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ),” Physical Review B, vol. 13, no. 11, pp. 5105–5110, 1976. View at Publisher · View at Google Scholar · View at Scopus
  23. D. B. Tanner, C. S. Jacobsen, A. F. Garito, and A. J. Heeger, “Infrared conductivity of tetrathiofulvalene tetracyanoquinodimethane (TTF- TCNQ) films,” Physical Review Letters, vol. 32, no. 23, pp. 1301–1305, 1974. View at Publisher · View at Google Scholar · View at Scopus
  24. C. S. Jacobsen, D. B. Tanner, and A. J. Heeger, “Single-crystal reffectance studies of tetrathiafulvalene tetracyanoquinodimethane,” Physical Review Letters, vol. 32, pp. 1559–1562, 1974. View at Google Scholar
  25. D. B. Tanner, C. S. Jacobsen, A. F. Garito, and A. J. Heeger, “Infrared studies of the energy gap in tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ),” Physical Review B, vol. 13, no. 8, pp. 3381–3404, 1976. View at Publisher · View at Google Scholar · View at Scopus
  26. J. E. Eldridge and F. E. Bates, “Far-infrared optical properties of semiconducting tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ), including the pinned charge-density wave,” Physical Review B, vol. 28, no. 12, pp. 6972–6981, 1983. View at Publisher · View at Google Scholar · View at Scopus
  27. J. E. Eldridge, “Improved measurement of the far-infrared optical properties of semiconducting tetrahiafulvalene tetracyanoquinodimethane,” Physical Review B, vol. 31, no. 8, pp. 5465–5467, 1985. View at Publisher · View at Google Scholar · View at Scopus
  28. D. B. Tanner, K. D. Cummings, and C. S. Jacobsen, “Far-Infrared study of the charge density wave in tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ),” Physical Review Letters, vol. 47, no. 8, pp. 597–600, 1981. View at Publisher · View at Google Scholar · View at Scopus
  29. D. B. Tanner and C. S. Jacobsen, “Low-temperature infrared studies of TTF-TCNQ,” Molecular crystals and liquid crystals, vol. 85, no. 1–4, pp. 137–145, 1982. View at Google Scholar · View at Scopus
  30. B. P. Gorshunov, G. V. Kozlov, A. A. Volkov, V. Železný, J. Petzelt, and C. S. Jacobsen, “Dielectric function of TTF-TCNQ in the submillimetre range,” Solid State Communications, vol. 60, no. 9, pp. 681–687, 1986. View at Google Scholar · View at Scopus
  31. D. Jérome, “The physics of organic superconductors,” Science, vol. 252, no. 5012, pp. 1509–1514, 1991. View at Google Scholar · View at Scopus
  32. J. P. Farges, Ed., Organic Conductors, Marcel Dekker, New York, NY, USA, 1994.
  33. T. Ishiguro, K. Yamaji, and G. Saito, Organic Supercon-Ductors, Springer, Berlin, Germany, 2nd edition, 1998.
  34. N. Toyota, M. Lang, and J. M. Müller, Low-Dimensional Molecular Metals, vol. 154 of Springer Series in Solid-State Science, Springer, Berlin, Germany, 2007.
  35. A. Lebed, The Physics of Organic Superconductors and Conductors, vol. 110 of Springer Series in Materials Science, Springer, Berlin, Germany, 2008.
  36. M. Dressel, S. Kirchner, P. Hesse et al., “Charge and spin dynamics of TMTSF and TMTTF salts,” Synthetic Metals, vol. 120, no. 1–3, pp. 719–720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Dressel, “Spin-charge separation in quasi one-dimensional organic conductors,” Naturwissenschaften, vol. 90, no. 8, pp. 337–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Dressel, “Ordering phenomena in quasi-one-dimensional organic conductors,” Naturwissenschaften, vol. 94, no. 7, pp. 527–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Kóhler, E. Rose, M. Dumm, G. Untereiner, and M. Dressel, “Comprehensive transport study of anisotropy and ordering phenomena in quasi-one-dimensional (TMTTF)2X salts (X=PF6,AsF6,SbF6,BF4,CIO4,ReO4 ),” Physical Review B, vol. 84, no. 3, pp. 035124-1–035124-13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. S. Jacobsen, D. B. Tanner, and K. Bechgaard, “Optical and infrared properties of tetramethyltetraselenafulvalene [(TMTSF)2X] and tetramethyltetrathiafulvalene [(TMTTF)2X] compounds,” Physical Review B, vol. 28, no. 12, pp. 7019–7032, 1983. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Eldridge and G. S. Bates, “The far-infrared properties of (TMTSF)2PFg and (TMTSF)2ClO4 at 6K,” Molecular Crystals and Liquid Crystals, vol. 119, pp. 183–190, 1985. View at Publisher · View at Google Scholar
  42. S. Donovan, Y. Kim, L. Degiorgi, M. Dressel, G. Grüner, and W. Wonneberger, “Electrodynamics of the spin-density-wave ground state: optical experiments on (TMTSF)2PF6,” Physical Review B, vol. 49, no. 5, pp. 3363–3377, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Degiorgi, M. Dressel, A. Schwartz, B. Alavi, and G. Grüner, “Direct observation of the spin-density-wave gap in (TMTSF)2PF6,” Physical Review Letters, vol. 76, no. 20, pp. 3838–3841, 1996. View at Google Scholar · View at Scopus
  44. M. Dressel, A. Schwartz, G. Grüner, and L. Degiorgi, “Deviations from drude response in low-dimensional metals: electrodynamics of the metallic state of (TMTSF)2PF6,” Physical Review Letters, vol. 77, no. 2, pp. 398–401, 1996. View at Google Scholar · View at Scopus
  45. H. K. Ng, T. Timusk, D. Jérome, and K. Bechgaard, “Far-infrared spectrum of di-tetramethyltetraselenafulvalene hexafluoroarsenate [(TMTSF)2AsF6],” Physical Review B, vol. 32, no. 12, pp. 8041–8045, 1985. View at Publisher · View at Google Scholar · View at Scopus
  46. J. E. Eldridge and G. S. Bates, “Far-infrared spectra of bis-(tetramethyltetraselenafulvalene) hexafluoroarsenate [(TMTSF)2AsF6] and hexafluoroantimonate [(TMTSF)2SbF6] in their spin-density-wave state,” Physical Review B, vol. 34, no. 10, pp. 6992–7002, 1986. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi, and T. Giamarchi, “On-chain electrodynamics of metallic (TMTSF)2X salts: observation of Tomonaga-Luttinger liquid response,” Physical Review B, vol. 58, no. 3, pp. 1261–1271, 1998. View at Google Scholar · View at Scopus
  48. H. K. Ng, T. Timusk, and K. Bechgaard, “Far-infrared study of bis(tetramethyltetraselenafulvalene) hexafluoroantimonate [(TMTSF)2SbF6]: coexistence of metallic and semiconducting states,” Physical Review B, vol. 30, no. 10, pp. 5842–5846, 1984. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Donovan, A. Schwartz, M. Dressel et al., “Effects of anion disorder on the electrodynamical response of a spin density wave,” Ferroelectrics, vol. 176, no. 1–4, pp. 343–352, 1996. View at Google Scholar · View at Scopus
  50. D. Jérome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6,” Journal de Physique Lettres, vol. 41, no. 4, pp. L95–L98, 1980. View at Google Scholar · View at Scopus
  51. C. S. Jacobsen, “Infrared studies on the electronic structure of organic conductors,” Mat. Fys. Medd. Dan. Vidensk. Selsk, vol. 41, pp. 251–290, 1985. View at Google Scholar
  52. C. S. Jacobsen, “Infrared properties of organic conductors,” in Low-Dimensional Conductors and Superconductors, D. Jérome and L. G. Caron, Eds., vol. 155 of NATO ASI B Series, Physics, pp. 253–2274, Plenum Press, London, UK, 1987. View at Google Scholar
  53. C. S. Jacobsen, “Optical properties,” in Highly Conducting Quasi-One-Dimensional Organic Conductors, E. Conwell, Ed., vol. 27 of Semiconductors and Semimetals, pp. 293–384, Academic Press, Boston, Mass, USA, 1988. View at Google Scholar
  54. S. Donovan, L. Degiorgi, and G. Grüner, “Electro-dynamics of one-dimensional metals-optical experiments on (TMTSF)2PF6,” in Europhysics Letters, vol. 19, pp. 433–438, 1992. View at Google Scholar
  55. S. Biermann, A. Georges, A. Lichtenstein, and T. Giamarchi, “Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems,” Physical Review Letters, vol. 87, no. 27, pp. 276405-1–276405-4, 2001. View at Google Scholar · View at Scopus
  56. T. Giamarchi, “Theoretical framework for quasi-one dimensional systems,” Chemical Reviews, vol. 104, no. 11, pp. 5037–5055, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Reviews of Modern Physics, vol. 83, no. 2, pp. 471–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. C. S. Jacobsen, K. Mortensen, M. Weger, and K. Bechgaard, “Anomalous magnetoresistance in an organic conductor: (TMTSF)2PF6,” Solid State Communications, vol. 38, no. 5, pp. 423–428, 1981. View at Google Scholar · View at Scopus
  59. M. Dressel, K. Petukhov, B. Salameh, P. Zornoza, and T. Giamarchi, “Scaling behavior of the longitudinal and transverse transport in quasi-one-dimensional organic conductors,” Physical Review B, vol. 71, no. 7, pp. 075104-1–075104-10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. C. S. Jacobsen, D. B. Tanner, and K. Bechgaard, “Optical properties of some (TMTSF)2X compounds,” Molecular Crystals and Liquid Crystals, vol. 79, pp. 25–38, 1982. View at Google Scholar
  61. C. S. Jacobsen, H. J. Pedersen, K. Mortensen, J. B. Torrance, and K. Bechgaard, “An unusual metal-insulator transition: bis(tetramethyltetraselenafulvalenium)-perrhenate (TMTSF2ReO4),” Journal of Physics C, vol. 15, no. 12, article 014, pp. 2651–2663, 1982. View at Publisher · View at Google Scholar · View at Scopus
  62. W. Henderson, V. Vescoli, P. Tran, L. Degiorgi, and G. Grüner, “Anisotropic electrodynamics of low dimensional metals: optical studies of (TMTSF)2ClO4,” European Physical Journal B, vol. 11, no. 3, pp. 365–368, 1999. View at Google Scholar · View at Scopus
  63. E. Rose, C. Loose, J. Kortus et al., “Pressure-dependent structural and electronic properties of quasi-one-dimensional (TMTTF)2PF6,” Journal of Physics. In press.
  64. A. Pashkin, M. Dressel, and C. A. Kuntscher, “Pressure-induced deconfinement of the charge transport in the quasi-one-dimensional Mott insulator (TMTTF)2AsF6,” Physical Review B, vol. 74, no. 16, pp. 165118-1–165118-9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Pashkin, M. Dressel, and C. A. Kuntscher, “Pressure-induced changes in the optical response of the quasi-1D organic salt (TMTTF)2AsF6,” Journal of Low Temperature Physics, vol. 142, no. 3-4, pp. 563–566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Pashkin, M. Dressel, M. Hanfland, and C. A. Kuntscher, “Deconfinement transition and dimensional crossover in the bechgaard-fabre salts: pressure- and temperature-dependent optical investigations,” Physical Review B, vol. 81, no. 12, pp. 125109-1–125109-11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Suzumura, M. Tsuchiizu, and G. Grüner, “Confinement of interchain hopping by umklapp scattering in two coupled chains,” Physical Review B, vol. 57, no. 24, pp. R15040–R15043, 1998. View at Google Scholar · View at Scopus
  68. M. Tsuchiizu, Y. Suzumura, and T. Giamarchi, “Renormalized inter-chain hopping versus charge gap in two coupled chains,” Progress of Theoretical Physics, vol. 101, no. 3, pp. 763–768, 1999. View at Google Scholar · View at Scopus
  69. M. Tsuchiizu and Y. Suzumura, “Confinement-deconfinement transition in two coupled chains with umklapp scattering,” Physical Review B, vol. 59, no. 19, pp. 12326–12337, 1999. View at Google Scholar · View at Scopus
  70. M. Tsuchiizu, P. Donohue, Y. Suzumura, and T. Gia- marchi, “Commensurate-incommensurate transition in two-coupled chains of nearly half-filled electrons,” The European Physical Journal B, vol. 19, no. 2, pp. 185–193, 2001. View at Publisher · View at Google Scholar
  71. K. le Hur, “Weakly coupled Hubbard chains at half-filling and confinement,” Physical Review B, vol. 63, no. 16, pp. 165110-1–165110-11, 2001. View at Google Scholar
  72. T. Giamarchi, “From luttinger to fermi liquids in organic conductors,” in The Physics of Organic Superconductors and Conductors, pp. 719–7743, Springer, Berlin, Germany, 2008. View at Google Scholar
  73. J. Moser, M. Gabay, P. Auban-Senzier, D. Jérome, K. Bechgaard, and J. M. Fabre, “Transverse transport in (TM)2X organic conductors: possible evidence for a Luttinger liquid,” European Physical Journal B, vol. 1, no. 1, pp. 39–46, 1998. View at Google Scholar · View at Scopus
  74. V. Vescoli, L. Degiorgi, W. Henderson, G. Grüner, K. P. Starkey, and L. K. Montgomery, “Dimensionality-driven insulator-to-metal transition in the Bechgaard salts,” Science, vol. 281, no. 5380, pp. 1181–1184, 1998. View at Google Scholar · View at Scopus
  75. P. Auban-Senzier, D. Jérome, C. Carcel, and J. M. Fabre, “Longitudinal and transverse transport of the quasi-one dimensional organic conductor TMTTF2PF6 studied under high pressure,” Journal de Physique, vol. 114, pp. 41–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. C. S. Jacobsen, D. B. Tanner, and K. Bechgaard, “In-frared and optical properties of (TMTSF)2X,” Journal de Physique, vol. 44, pp. C3-859–C3-865, 1983. View at Google Scholar
  77. V. Vescoli, L. Degiorgi, M. Dressel et al., “Spin-density-wave gap in the Bechgaard salts (TMTSF)2X,” Physical Review B, vol. 60, no. 11, pp. 8019–8027, 1999. View at Google Scholar · View at Scopus
  78. G. Grüner, Density Waves in Solids, Addison-Wesley, Reading, Mass, USA, 1994.
  79. L. J. Azevedo, J. E. Schirber, and E. M. Engler, “Se77 nuclear magnetic resonance in di-tetramethyltetraselenafulvalene phosphorous hexafluoride [(TMTSF)2PF6] under pressure,” Physical Review B, vol. 27, no. 9, pp. 5842–5845, 1983. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Cao, T. Timusk, and K. Bechgaard, “Unconventional electrodynamic response of the quasi-one-dimensional organic conductor (TMTSF)2ClO4,” Journal de Physique I, vol. 6, no. 12, pp. 1719–1726, 1996. View at Google Scholar · View at Scopus
  81. H. K. Ng, T. Timusk, and K. Bechgaard, “Far-infrared properties of (TMTSF)2ClO4 at low temperatures,” Journal de Physique, vol. 44, pp. C3-867–C3-872, 1983. View at Google Scholar
  82. K. Kornelsen, J. E. Eldridge, and G. S. Bates, “Far-infrared reflectivity of bis-tetramethyltetraselenafulvalene hexafluoroarsenate [(TMTSF)2AsF6] through the spin-density-wave phase transition,” Physical Review B, vol. 35, no. 17, pp. 9162–9167, 1987. View at Publisher · View at Google Scholar · View at Scopus
  83. P. M. Chaikin, P. Haen, E. M. Engler, and R. L. Greene, “Magnetoresistance and Hall effect in tetramethyl-tetraselenafulvalene-phosphorus hexafloride [(TMTSF)2PF6],” Physical Review B, vol. 24, no. 12, pp. 7155–7161, 1981. View at Publisher · View at Google Scholar · View at Scopus
  84. V. Vescoli, L. Degiorgi, B. Alavi, and G. Grüner, “The spin-density-wave gap in (TMTSF)2ClO4,” Physica B, vol. 244, pp. 121–124, 1998. View at Google Scholar · View at Scopus
  85. M. Dressel, L. Degiorgi, J. Brinckmann, A. Schwartz, and G. Grüner, “Optical response of the spin-density-wave ground state,” Physica B, vol. 230-232, pp. 1008–1010, 1997. View at Google Scholar · View at Scopus
  86. M. Dumm, A. Loidl, B. Alavi, K. P. Starkey, L. K. Montgomery, and M. Dressel, “Comprehensive ESR study of the antiferromagnetic ground states in the one-dimensional spin systems (TMTSF)2PF6, (TMTSF)2AsF6, and (TMTTF)2Br,” Physical Review B, vol. 62, no. 10, pp. 6512–6520, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Watanabe, R. Kondo, S. Kagoshima, and R. Shimano, “Spin-density-wave gap in (TMTSF)2PF6 probed by reflection-type terahertz time-domain spectroscopy,” Physica Status Solidi (B), vol. 245, no. 12, pp. 2688–2691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Watanabe, R. Kondo, S. Kagoshima, and R. Shimano, “Observation of ultrafast photoinduced closing and recovery of the spin-density-wave gap in (TMTSF )2PF6,” Physical Review B, vol. 80, no. 22, pp. 2204081-1–220408-4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Watanabe, R. Kondo, S. Kagoshima, and R. Shimano, “Ultrafast photo-induced insulator-to-metal transition in the spin density wave system of (TMTSF)2PF6,” Physica B, vol. 405, no. 11, pp. S360–S362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. H. H. S. Javadi, S. Sridhar, G. Grüner, L. Chiang, and F. Wudl, “Giant conductivity resonance in the spin-density-wave state of an organic conductor,” Physical Review Letters, vol. 55, no. 11, pp. 1216–1219, 1985. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Donovan, M. Dressel, L. Degiorgi, A. Schwartz, A. Virosztek, and G. Grüner, “Electrodynamic properties of (TMTSF)2PF6,” Synthetic Metals, vol. 86, no. 1, pp. 2181–2182, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Schwartz, S. Donovan, M. Dressel, L. Degiorgi, and G. Grüner, “Normal state electrodynamics of compounds with charge- and spin-density-wave ground states,” Physica B, vol. 230–232, pp. 1005–1007, 1997. View at Google Scholar · View at Scopus
  93. M. Dressel, “On the order parameter of Bechgaard salts,” Physica C, vol. 317-318, pp. 89–97, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. K. Petukhov and M. Dressel, “Collective spin-density-wave response perpendicular to the chains of the quasi-one-dimensional conductor (TMTSF)2PF6,” Physical Review B, vol. 71, no. 7, pp. 073101-1–073101-3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Zornoza, K. Petukhov, M. Dressel, N. Biskup, T. Vuletić, and S. Tomić, “Anisotropy and field-dependence of the spin-density-wave dynamics in the quasi one-dimensional conductor (TMTSF)2PF6,” European Physical Journal B, vol. 46, no. 2, pp. 223–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Dressel, K. Petukhov, and M. Scheffler, “Anisotropic SDW dynamics in (TMTSF)2PF6,” Journal of Low Temperature Physics, vol. 142, no. 3-4, pp. 133–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. J. L. Musfeldt, M. Poirier, P. Batail, and C. Lenoir, “Microwave dielectric studies of the spin-density-wave state in (TMTSF)2PF6,” Physical Review B, vol. 51, no. 13, pp. 8347–8356, 1995. View at Publisher · View at Google Scholar · View at Scopus
  98. J. L. Musfeldt, M. Poirier, P. Batail, and C. Lenoir, “H-T behavior of the spin density wave condensate in (TMTSF)2AsF6,” Europhysics Letters, vol. 30, no. 2, pp. 105–110, 1996. View at Google Scholar
  99. J. L. Musfeldt, M. Poirier, P. Batail, and C. Lenoir, “Magnetic-field behavior of the spin-density-wave state in (TMTSF)2AsF6,” Physical Review B, vol. 52, no. 22, pp. 15983–15991, 1995. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Vuletić, P. Auban-Senzier, C. Pasquier et al., “Coexistence of superconductivity and spin density wave orderings in the organic superconductor (TMTSF)2PF6,” European Physical Journal B, vol. 25, no. 3, pp. 319–331, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. N. Kang, B. Salameh, P. Auban-Senzier, D. Jérome, C. R. Pasquier, and S. Brazovskii, “Domain walls at the spin-density-wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure,” Physical Review B, vol. 81, no. 10, pp. 100509-1–100509-4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Bozio, C. Pecile, K. Bechgaard, F. Wudl, and D. Nalewajek, “Infrared study on the formation of charge density waves in (TMTSF)2X (X=ReO4 and PF6 at atmospheric pressure,” Solid State Communications, vol. 41, no. 12, pp. 905–910, 1982. View at Google Scholar · View at Scopus
  103. K. Kikuchi, I. Ikemoto, K. Yakushi, H. Kuroda, and K. Kobayashi, “Temperature dependence of the reflectance spectrum of (TMTSF)2ClO4,” Solid State Communications, vol. 42, no. 6, pp. 433–435, 1982. View at Google Scholar · View at Scopus
  104. H. K. Ng, T. Timusk, J. M. Delrieu, D. Jérome, K. Bechgaard, and J. M. Fabre, “Observation of a gap in the farinfrared magneto-absorption of (TMTSF)2ClO4: possibility of one-dimensional fluctuating superconductivity,” Journal de Physique Lettres, vol. 43, pp. 513–519, 1982. View at Google Scholar · View at Scopus
  105. T. Timusk, “Quasi one-dimensinoal conductors: the far infrared problem,” in Low-Dimensional Conductors and Superconductors, D. Jérome and L. G. Caron, Eds., vol. 155 of NATO ASI B Series, Physics, pp. 275–2284, Plenum Press, London, UK, 1987. View at Google Scholar
  106. T. Timusk, “Infrared properties of exotic superconductors,” Physica C, vol. 317-318, pp. 18–29, 1999. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Schwenk, K. Andres, and F. Wudl, “Resistivity of the organic superconductor ditetramethyltetraselenafulvalenium perchlorate, (TMTSF)2ClO4, in its relaxed, quenched, and intermediate state,” Physical Review B, vol. 29, no. 1, pp. 500–502, 1984. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Pedron, R. Bozio, M. Meneghetti, and C. Pecile, “Electronic interactions in the organic conductors (TMTSF)2X (X=CIO4 and PF6) and (TMTTF)2X (X=Br and PF6) from their infrared spectra,” Physical Review B, vol. 49, no. 16, pp. 10893–10907, 1994. View at Publisher · View at Google Scholar · View at Scopus
  109. W. A. Challener, P. L. Richards, and R. L. Greene, “Far infrared properties of (TMTSF)2ClO4,” Journal de Physique, vol. 44, pp. C3-873–C3-878, 1983. View at Google Scholar
  110. W. A. Challener, P. L. Richards, and R. L. Greene, “Far infrared measurements of (TMTSF)2ClO4,” Solid State Communications, vol. 51, no. 10, pp. 765–768, 1984. View at Google Scholar · View at Scopus
  111. J. E. Eldridge, C. C. Homes, F. E. Bates, and G. S. Bates, “Far-infrared powder absorption measurements of some tetramethyltetraselenafulvalene salts [(TMTSF)2X],” Physical Review B, vol. 32, no. 8, pp. 5156–5162, 1985. View at Publisher · View at Google Scholar · View at Scopus
  112. C. C. Homes and J. E. Eldridge, “Lattice-mode coupling to the charge-density wave in (TMTSF)2ReO4 (where TMTSF is bis-tetramethyltetraselenafulvalene),” Physical Review B, vol. 40, no. 9, pp. 6138–6143, 1989. View at Publisher · View at Google Scholar · View at Scopus
  113. C. C. Homes and J. E. Eldridge, “Infrared optical properties of (TMTSF)2ReO4 and (TMTSF)2BF4 (where TMTSF is tetramethyltetraselenafulvalene) compared with several model calculations,” Physical Review B, vol. 42, no. 15, pp. 9522–9533, 1990. View at Publisher · View at Google Scholar · View at Scopus
  114. J. E. Eldridge and C. C. Homes, “Vibrational assignments in the conductivity spectra of semiconducting (TMTSF)2ReO4 and (TMTSF)2BF4 (where TMTSF is tetramethyltetraselenafulvalene) for radiation polarized perpendicular to the chains,” Physical Review B, vol. 43, no. 17, pp. 13971–13977, 1991. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Dressel, M. Dumm, T. Knoblauch, and M. Masino, “Comprehensive optical investigations of charge order in organic chain compounds (TMTTF)2X,” Crystals, vol. 2, pp. 528–578, 2012. View at Google Scholar
  116. M. Krauzman, H. Poulet, and R. M. Pick, “Resonant Raman scattering in a bis-tetramethyltetraselenafulvalene- hexafluorophosphate [(TMTSF)2PF6] single crystal,” Physical Review B, vol. 33, no. 1, pp. 99–105, 1986. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Rindorf, H. Soling, and N. Throup, “Di(4,4,5,5-tetramethyl-2,2-bi-1,3-diselenolyliden)ium perrhenate, C20H24Se8+ .ReO4, (TMTSF)2ReO4. Detailed superstructure at 120 K,” Acta Crystallographica C, vol. 40, pp. 1137–11139, 1984. View at Google Scholar
  118. T. J. B. M. Janssen, A. S. Perel, A. M. Gerrits et al., “Far-infrared spectroscopy of the field-induced spin-density-wave gap in (TMTSF)2ClO4,” Physical Review B, vol. 46, no. 13, pp. 8663–8666, 1992. View at Publisher · View at Google Scholar · View at Scopus
  119. A. S. Perel, J. S. Brooks, C. J. G. N. Langerak et al., “Magnetic-field-dependent energy levels in a highly anisotropic electronic material,” Physical Review Letters, vol. 67, no. 15, pp. 2072–2075, 1991. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Ellison, M. Reedyk, and K. Behnia, “Far-infrared electrodynamic response of (TMTSF)2ClO4 in the normal and superconducting states,” Physical Review B, vol. 66, no. 1, pp. 125081–125084, 2002. View at Google Scholar · View at Scopus
  121. B. Gorshunov, S. Kaiser, and M. Dressel, “THz optical properties of (TMTSF)2ClO4 and (TMTSF)2PF6,” in press.