Table of Contents
ISRN Condensed Matter Physics
Volume 2012, Article ID 750497, 8 pages
http://dx.doi.org/10.5402/2012/750497
Research Article

Characterization and Electrical Properties of [C6H9N2]2CuCl4 Compound

Laboratoire de l’État Solide, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia

Received 31 October 2012; Accepted 24 November 2012

Academic Editors: M. Higuchi, A. N. Kocharian, V. Kochereshko, and M. Naito

Copyright © 2012 M. Hamdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Chaabane, F. Hlel, and K. Guidara, “Dielectric spectroscopy study of the new compound [C12H17N2]2CdCl4,” Ionics, vol. 16, no. 4, pp. 371–377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Chaabane, F. Hlel, and K. Guidara, “Electrical study by impedance spectroscopy of the new compound [C12H17N2]2CdCl4,” Journal of Alloys and Compounds, vol. 461, no. 1-2, pp. 495–500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Chaabane, F. Hlel, and K. Guidara, “Synthesis, Infra-red, Raman, NMR and structural characterization by X-ray Diffraction of [C12H17N2]2CdCl4 and [C6H10N2]2Cd3Cl10 compounds,” Journal of PMC Physics B, vol. 1, article 11, 2008. View at Publisher · View at Google Scholar
  4. A. K. Vishwakarma, P. S. Ghalsasi, A. Navamoney, Y. Lan, and A. K. Powell, “Structural phase transition and magnetic properties of layered organic-inorganic hybrid compounds: P-Haloanilinium tetrachlorocuparate(II),” Polyhedron, vol. 30, no. 9, pp. 1565–1570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Shibuya, M. Koshimizu, Y. Takeoka, and K. Asai, “Scintillation properties of (C6H13NH3)2PbI4: exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons,” Nuclear Instruments and Methods in Physics Research B, vol. 194, no. 2, pp. 207–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Ren, J. Qin, T. Liu, and S. Zhang, “Synthesis, structure and second harmonic generation of novel inorganic-organic hybrid, (p-cyano-1-hydrogenpyridinium)2CdI4,” Inorganic Chemistry Communications, vol. 7, no. 1, pp. 134–136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Liu, P. Yang, and J. Meng, “Synthesis, crystal structure and optical properties of a novel organic inorganic hybrid materials (C9H14N)2PbCl4,” Solid State Sciences, vol. 13, no. 5, pp. 1036–1040, 2011. View at Google Scholar
  8. P. S. Ghalsasi and K. Inoue, “Distorted perovskite structured organic-inorganic hybrid compounds for possible multiferroic behavior: [n-alkyl]2FeCl4,” Polyhedron, vol. 28, no. 9-10, pp. 1864–1867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Kitazawa, M. Aono, and Y. Watanabe, “Excitons in organic-inorganic hybrid compounds (CnH2n+1NH3)2PbBr4 (n=4, 5, 7 and 12),” Thin Solid Films, vol. 518, no. 12, pp. 3199–3203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. J. Coffey, C. P. Landee, W. T. Robinson, M. M. Turnbull, M. Winn, and F. M. Woodward, “Transition metal halide salts of 2-amino-3-methylpyridine: Synthesis, crystal structures and magnetic properties of (3-MAP)2CuX4 [3-MAP = 2-amino-3-methylpyridinium; X = Cl, Br],” Inorganica Chimica Acta, vol. 303, no. 1, pp. 54–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. R. H. Al-Far and B. F. Ali, “Bis(2, 6-dimethyl pyridinium) tetra bromido zincate(II),” Acta Crystallographica Section E, vol. 65, pp. 581–582, 2009. View at Google Scholar
  12. A. K. Rai, R. Singh, K. N. Singh, and V. B. Singh, “FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole,” Spectro Chimica Acta A, vol. 63, no. 2, pp. 483–490, 2006. View at Google Scholar
  13. M. N. Ohnet, M. Jouan, G. Ménard et al., “Chemical bonding in metal-heterocumulene complexes. Part 3. Vibrational study of the cyanamide ligand NCNR2 and the complexes (CO)5MNCNR2 (M is Cr or W; R is C2H5 or CH3), and determination of the force field for the complex (CO)5CrNCN(C2H5)2,” Spectrochimica Acta A, vol. 52, no. 5, pp. 505–526, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. L. A. Sheludyakova and T. V. Basova, “Hexachlorocuprate(II) anion: vibration spectra and structure,” Journal of Structural Chemistry, vol. 43, no. 1, pp. 581–586, 2002. View at Google Scholar
  15. T. Guerfel and A. Jouini, “Crystal structure, thermal analysis, and IR spectroscopic investigation of bis(2-amino-6-methyl) pyridinium sulfate,” Journal of Chemical Crystallography, vol. 35, no. 7, pp. 513–521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Oueslati, F. Hlel, and M. Gargouri, “Preparation and characterization of organic inorganic hybrid compound [N(C4H9)4]2Cu2Cl6,” Ionics, vol. 10, p. 11581, 2010. View at Google Scholar
  17. K. S. Rao, P. M. Krishna, D. M. Prasad, J. H. Lee, and J. S. Kim, “Electrical, electromechanical and structural studies of lead potassium samarium niobate ceramics,” Journal of Alloys and Compounds, vol. 464, no. 1-2, pp. 497–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. M'Peko, D. L. Spavieri, and M. F. de Souza, “In situ characterization of the grain and grain-boundary electrical responses of zirconia ceramics under uniaxial compressive stresses,” Applied Physics Letters, vol. 81, no. 18, pp. 2827–2832, 2002. View at Google Scholar
  19. A. Huanosta, O. A. Fregoso, E. Amano, C. T. Muñoz, M. E. M. Alvarez, and J. G. M. Alvarez, “ac impedance analysis on crystalline layered and polycrystalline bismuth titanate,” Journal of Applied Physics, vol. 69, no. 1, pp. 404–408, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Ye, C. Q. Sun, H. Huang, and P. Hing, “Dielectric transition of nanostructured diamond films,” Applied Physics Letters, vol. 78, no. 13, pp. 1826–1828, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Hill and A. K. Jonscher, “DC and AC conductivity in hopping electronic systems,” Journal of Non-Crystalline Solids, vol. 32, no. 1-3, pp. 53–69, 1979. View at Google Scholar · View at Scopus
  22. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, UK, 2nd edition, 1979.
  23. R. H. Chen, R. Y. Chang, and S. C. Shern, “Dielectric and AC ionic conductivity investigations in K3H(SeO4)2 single crystal,” Journal of Physics and Chemistry of Solids, vol. 63, no. 11, pp. 2069–2077, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Oueslati, F. Hlel, K. Guidara, and M. Gargouri, “AC conductivity analysis and dielectric relaxation behavior of [N(C3H7)4]2Cu2Cl6,” Journal of Alloys and Compounds, vol. 492, no. 1-2, pp. 508–514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. R. Long, “Frequency-dependent loss in amorphous semiconductors,” Advances in Physics, vol. 31, pp. 553–637, 1982. View at Google Scholar
  26. S. R. Elliott, “A. c. Conduction in amorphous chalcogenide and pnictide semiconductors,” Advances in Physics, vol. 36, no. 2, pp. 135–218, 1987. View at Google Scholar · View at Scopus