Table of Contents
ISRN Metallurgy
Volume 2012, Article ID 750914, 9 pages
http://dx.doi.org/10.5402/2012/750914
Research Article

Thermal Expansion Behaviour of Ternary Nickel-Based, Cobalt-Based, and Iron-Based Alloys Containing Very High Fractions of Carbides

Team 206 “Surface and Interface, Chemical Reactivity of Materials”, Department of Chemistry and Physics of Solids and Surface, Institut Jean Lamour (UMR CNRS 7198), Faculty of Sciences and Technologies, University of Lorraine, Boulevard des Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy, France

Received 27 August 2012; Accepted 13 September 2012

Academic Editors: F. Hori and M.-C. Wang

Copyright © 2012 Patrice Berthod and Lionel Aranda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. F. Bradley, Superalloys: A Technical Guide, ASM International, Materials Park, Ohio, USA, 1988.
  2. C. T. Sims and W. C. Hagel, The Superalloys, John Wiley & Sons, New York, NY, USA, 1972.
  3. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, London, UK, 1988.
  4. D. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam, The Netherlands, 2008.
  5. A. Klimpel, L. A. Dobrzański, A. Lisiecki, and D. Janicki, “The study of properties of Ni-W2C and Co-W2C powders thermal sprayed deposits,” Journal of Materials Processing Technology, vol. 164-165, pp. 1068–1073, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Z.-T. Wang and H.-H. Chen, “Microstructure and friction and wear behavior of induction clad Ni-based composite coating reinforced with micro- and nano-WC particulates,” Mocaxue Xuebao/Tribology, vol. 25, no. 3, pp. 203–206, 2005. View at Google Scholar · View at Scopus
  7. H. Han, S. Baba, H. Kitagawa et al., “Plasma-carburization of nickel-based self-fluxing alloy,” Vacuum, vol. 78, no. 1, pp. 27–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Zhang and X. Zhang, “Laser cladding of stainless steel with Ni-Cr3C2 and Ni-WC for improving erosive-corrosive wear performance,” Surface and Coatings Technology, vol. 190, no. 2-3, pp. 212–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Berthod, J. L. Bernard, and C. Liébaut, Cobalt Alloy and Fabrication of Articles from the Alloy, Patent WO99/16919.
  10. B. Roebuck and E. A. Almond, “Deformation and fracture processes and the physical metallurgy of WC-Co hardmetals,” International Materials Reviews, vol. 33, no. 2, pp. 90–110, 1988. View at Google Scholar
  11. H. E. N. Stone, “Hardness, oxidation and constitution in chromium-iron alloys,” Journal of Materials Science, vol. 14, no. 12, pp. 2787–2790, 1979. View at Publisher · View at Google Scholar
  12. B. V. Cockeram, “Some observations of the influence of δ-ferrite content on the hardness, galling resistance, and fracture toughness of selected commercially available iron-based hardfacing alloys,” Metallurgical and Materials Transactions A, vol. 33, no. 11, pp. 3403–3419, 2002. View at Google Scholar · View at Scopus
  13. T. B. Shafffer, Handbooks of High-Temperature Materials No.1. Materials Index, Plenum Press, New York, NY, USA, 1964.
  14. Thermo-Calc version N: “Foundation for Computational Thermodynamics” Stockholm, Sweden, Copyright (1993, 2000).
  15. J. O. Andersson, “Thermodynamic properties of Cr-C,” Calphad, vol. 11, no. 3, pp. 271–276, 1987. View at Google Scholar · View at Scopus
  16. A. Gabriel, C. Chatillon, and I. Ansara, “Thermochemical and phase diagram analysis of the Ni-C, Co-C, and Co-Ni-C systems,” High Temperature Science, vol. 25, no. 1, pp. 17–54, 1988. View at Google Scholar · View at Scopus
  17. A. Fernández Guillermet, “Critical evaluation of the thermodynamic properties of cobalt,” International Journal of Thermophysics, vol. 8, no. 4, pp. 481–510, 1987. View at Publisher · View at Google Scholar · View at Scopus
  18. A. F. Guillermet, “Thermodynamic analysis of the Co-Al-C and Ni-Al-C systems,” Zeitschrift für Metallkunde, vol. 78, no. 10, pp. 700–709, 1987. View at Google Scholar · View at Scopus
  19. A. F. Guillermet, “Thermodynamic properties of the iron-cobalt-carbon system,” Zeitschrift für Metallkunde, vol. 79, no. 5, pp. 317–329, 1988. View at Google Scholar
  20. A. Fernandez Guillermet and P. Gustafson, “Assessment of the thermodynamic properties and the (p,T) phase diagram of iron,” High Temperatures—High Pressures, vol. 16, no. 6, pp. 591–610, 1984. View at Google Scholar · View at Scopus
  21. J. O. Andersson and B. Sundman, “Thermodynamic properties of the CrFe system,” Calphad, vol. 11, no. 1, pp. 83–92, 1987. View at Google Scholar · View at Scopus
  22. P. Gustafson, “A thermodynamic evaluation of the C-Fe system,” Scandinavian Journal of Metallurgy, vol. 14, no. 5, pp. 259–267, 1985. View at Google Scholar
  23. J.-O. Andersson, “A thermodynamic evaluation of the Fe-Cr-C system,” Metallurgical Transactions A, vol. 19, no. 3, pp. 627–636, 1988. View at Publisher · View at Google Scholar · View at Scopus
  24. G. V. Samsonov, Handbooks of High-Temperature Materials No. 2. Properties Index, Plenum Press, New York, NY, USA, 1964.
  25. P. Berthod, “Influence of carbides and of the dendritic orientation on the thermal expansion of Ni-base, Co-base and Fe-base simple cast alloys,” International Journal of Materials Research, vol. 99, no. 3, pp. 265–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Berthod, C. Heil, and L. Aranda, “Influence of the morphologic evolution of the eutectic carbides at high temperature on the thermal expansion behavior of refractory cast alloys,” Journal of Alloys and Compounds, vol. 504, no. 1, pp. 243–250, 2010. View at Publisher · View at Google Scholar · View at Scopus