Table of Contents
ISRN Soil Science
Volume 2012 (2012), Article ID 783876, 11 pages
http://dx.doi.org/10.5402/2012/783876
Review Article

Rare Earth Elements: Their Importance in Understanding Soil Genesis

Department of Agriculture, Southeast Missouri State University, 1 University Plaza, Cape Girardeau, MO 63701, USA

Received 5 January 2012; Accepted 23 February 2012

Academic Editors: G. Benckiser, L. Mercury, and W. Peijnenburg

Copyright © 2012 Michael T. Aide and Christine Aide. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, New York, NY, USA, 2nd edition, 1984.
  2. P. Henderson, “General geochemical properties and abundances of the rare earth elements,” in Rare Earth Element Geochemistry, P. Henderson, Ed., pp. 1–29, Elsevier Science, New York, NY, USA, November 1983. View at Google Scholar
  3. P. A. Helmke, “Neutron activation analysis,” in Methods of Soil Analysis: Part 3, Chemical Methods, D. L. Sparks, Ed., pp. 141–160, American Society of Agronomy-Soil Science Society of America, Madison, Wis, USA, January 1996. View at Google Scholar
  4. A. Kabata-Pendias, Trace Elements in Soils and Plants, CRC Press, New York, NY, USA, 3rd edition, 2000.
  5. S. M. McLennan, “Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes,” in Geochemistry and Mineralogy of Rare Earth Elements, B. R. Lipin and G. A. McKay, Eds., vol. 21, Mineralogical Society of Amer, Washington, DC, USA, January 1989. View at Google Scholar
  6. S. R. Taylor, S. M. McLennan, and M. T. McCulloch, “Geochemistry of loess, continental crustal composition and crustal model ages,” Geochimica et Cosmochimica Acta, vol. 47, no. 11, pp. 1897–1905, 1983. View at Google Scholar · View at Scopus
  7. L. P. Gromet, L. A. Haskin, R. L. Korotev, and R. F. Dymek, “The "North American shale composite": its compilation, major and trace element characteristics,” Geochimica et Cosmochimica Acta, vol. 48, no. 12, pp. 2469–2482, 1984. View at Google Scholar · View at Scopus
  8. A. M. Clark, “Mineralogy of the rare earth elements,” in Rare Earth Element Geochemistry, P. Henderson, Ed., pp. 33–54, Elsevier Science, New York, NY, USA, 1983. View at Google Scholar
  9. V. A. Sinitsyn, S. U. Aja, D. A. Kulik, and S. A. Wood, “Acid-base surface chemistry and sorption of some lanthanides on K+-saturated, Marblehead illite: I. results of an experimental investigation,” Geochimica et Cosmochimica Acta, vol. 64, no. 2, pp. 185–194, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. D. A. Kulik, S. U. Aja, V. A. Sinitsyn, and S. A. Wood, “Acid-base surface chemistry and sorption of some lanthanides on K+, Marblehead illite: II. A multisite-surface complexation modeling,” Geochimica et Cosmochimica Acta, vol. 64, no. 2, pp. 195–213, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Bradbury and B. Baeyens, “Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation,” Geochimica et Cosmochimica Acta, vol. 66, no. 13, pp. 2325–2334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Wen, X. Q. Shan, J. M. Lin, G. G. Tang, N. B. Bai, and D. A. Yuan, “Desorption kinetics of yttrium, lanthanum, and cerium from soils,” Soil Science Society of America Journal, vol. 66, no. 4, pp. 1198–1206, 2002. View at Google Scholar · View at Scopus
  13. T. Rabung, M. C. Pierret, A. Bauer, H. Geckeis, M. H. Bradbury, and B. Baeyens, “Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments,” Geochimica et Cosmochimica Acta, vol. 69, no. 23, pp. 5393–5402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Tang and K. H. Johannesson, “Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach,” Geochimica et Cosmochimica Acta, vol. 67, no. 13, pp. 2321–2339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. Bradbury, B. Baeyens, H. Geckeis, and T. Rabung, “Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 2: surface complexation modelling,” Geochimica et Cosmochimica Acta, vol. 69, no. 23, pp. 5403–5412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Tertre, G. Berger, E. Simoni et al., “Europium retention onto clay minerals from 25 to 150°C: experimental measurements, spectroscopic features and sorption modelling,” Geochimica et Cosmochimica Acta, vol. 70, no. 18, pp. 4563–4578, 2006. View at Publisher · View at Google Scholar
  17. E. Tertre, A. Hofmann, and G. Berger, “Rare earth element sorption by basaltic rock: experimental data and modeling results using the "generalised composite approach",” Geochimica et Cosmochimica Acta, vol. 72, no. 4, pp. 1043–1056, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. B. I. Kronberg, H. W. Nesbitt, and W. W. Lam, “Upper Pleistocene Amazon deep-sea fan muds reflect intense chemical weathering of their mountainous source lands,” Chemical Geology, vol. 54, no. 3-4, pp. 283–294, 1986. View at Google Scholar · View at Scopus
  19. K. C. Condie, “Another look at rare earth elements in shales,” Geochimica et Cosmochimica Acta, vol. 55, no. 9, pp. 2527–2531, 1991. View at Google Scholar · View at Scopus
  20. H. W. Nesbitt and G. Markovics, “Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments,” Geochimica et Cosmochimica Acta, vol. 61, no. 8, pp. 1653–1670, 1997. View at Google Scholar · View at Scopus
  21. M. Bau, “Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect,” Geochimica et Cosmochimica Acta, vol. 63, no. 1, pp. 67–77, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. E. H. De Carlo and G. M. McMurtry, “Rare-earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific,” Chemical Geology, vol. 95, no. 3-4, pp. 235–250, 1992. View at Google Scholar · View at Scopus
  23. J. J. Braun, M. Pagel, A. Herbilln, and C. Rosin, “Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study,” Geochimica et Cosmochimica Acta, vol. 57, no. 18, pp. 4419–4434, 1993. View at Google Scholar
  24. J. J. Braun, J. Viers, B. Dupré, M. Polve, J. Ndam, and J. P. Muller, “Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions,” Geochimica et Cosmochimica Acta, vol. 62, no. 2, pp. 273–299, 1998. View at Google Scholar
  25. D. Koeppenkastrop and E. H. De Carlo, “Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach,” Chemical Geology, vol. 95, no. 3-4, pp. 251–263, 1992. View at Google Scholar · View at Scopus
  26. J. S. Marsh, “REE fractionation and Ce anomalies in weathered Karoo dolerite,” Chemical Geology, vol. 90, no. 3-4, pp. 189–194, 1991. View at Google Scholar · View at Scopus
  27. A. Ohta and I. Kawabe, “REE(III) adsorption onto Mn dioxide (δ-Mn02) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2,” Geochimica et Cosmochimica Acta, vol. 65, no. 5, pp. 695–703, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, John Wiley and Sons, New York, NY, USA, 1976.
  29. F. J. Millero, “Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength,” Geochimica et Cosmochimica Acta, vol. 56, no. 8, pp. 3123–3132, 1992. View at Google Scholar · View at Scopus
  30. G. D. Klungness and R. H. Byrne, “Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength,” Polyhedron, vol. 19, no. 1, pp. 99–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Tertre, G. Berger, S. Castet, M. Loubet, and E. Giffaut, “Experimental sorption of Ni2+, Cs+ and Ln3+ onto a montmorillonite up to 150°C,” Geochimica et Cosmochimica Acta, vol. 69, no. 21, pp. 4937–4948, 2005. View at Publisher · View at Google Scholar
  32. E. Hummel, U. Berner, E. Curti, and A. Thoenen, Nagra/PSI Chemical Thermodynamic Data Base, Nagra, Wettingen, Switzerland, 2008.
  33. K. J. Cantrell and R. H. Byrne, “Rare earth element complexation by carbonate and oxalate ions,” Geochimica et Cosmochimica Acta, vol. 51, no. 3, pp. 597–605, 1987. View at Google Scholar · View at Scopus
  34. J. H. Lee and R. H. Byrne, “Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions,” Geochimica et Cosmochimica Acta, vol. 57, no. 2, pp. 295–302, 1993. View at Google Scholar · View at Scopus
  35. Y. R. Luo and R. H. Byrne, “Carbonate complexation of yttrium and the rare earth elements in natural waters,” Geochimica et Cosmochimica Acta, vol. 68, no. 4, pp. 691–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. R. Luo and R. H. Byrne, “Carbonate complexation of yttrium and the rare earth elements in natural waters,” Geochimica et Cosmochimica Acta, vol. 68, no. 4, pp. 691–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. E. Essington, Soil and Water Chemistry: An Integrative Approach, CRC, Boca Raton, Fla, USA, 2004.
  38. J. D. Allison, D. S. Brown, and K. L. Novo-Gradac, A Geochemical Assessment Model for Environmental Systems: Version 3.0, Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, Ga, USA, 1999.
  39. C. M. Gramaccioli, V. Diella, and F. Demartin, “The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: some examples in minerals,” European Journal of Mineralogy, vol. 11, no. 6, pp. 983–992, 1999. View at Google Scholar · View at Scopus
  40. J. F. Banfield and R. A. Eggleton, “Apatite replacement and rare earth mobilization, fractionation, and fixation during weathering,” Clays & Clay Minerals, vol. 37, no. 2, pp. 113–127, 1989. View at Google Scholar · View at Scopus
  41. Z. S. Cetiner, S. A. Wood, and C. H. Gammons, “The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C,” Chemical Geology, vol. 217, no. 1-2, pp. 147–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Nagao, R. R. Rao, R. W. D. Killey, and J. L. Young, “Migration behavior of Eu(III) in sandy soil in the presence of dissolved organic materials,” Radiochimica Acta, vol. 82, no. 1, pp. 205–211, 1998. View at Google Scholar · View at Scopus
  43. O. Pourret, M. Davranche, G. Gruau, and A. Dia, “Competition between humic acid and carbonates for rare earth elements complexation,” Journal of Colloid and Interface Science, vol. 305, no. 1, pp. 25–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. I. Prudêncio, M. A. S. Braga, and M. A. Gouveia, “REE mobilization, fractionation and precipitation during weathering of basalts,” Chemical Geology, vol. 107, no. 3-4, pp. 251–254, 1993. View at Google Scholar · View at Scopus
  45. J. J. Braun and M. Pagel, “Geochemical and mineralogical behavior of REE, Th and U in the Akongo lateritic profile (SW Cameroon),” Catena, vol. 21, no. 2-3, pp. 173–177, 1994. View at Google Scholar · View at Scopus
  46. J. F. McCarthy, W. E. Sanford, and P. L. Stafford, “Lanthanide field tracers demonstrate enhanced transport of transuranic radionuclides by natural organic matter,” Environmental Science and Technology, vol. 32, no. 24, pp. 3901–3906, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Land, B. Öhlander, J. Ingri, and J. Thunberg, “Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction,” Chemical Geology, vol. 160, no. 1-2, pp. 121–138, 1999. View at Google Scholar · View at Scopus
  48. P. Oliva, J. Viers, B. Dupré et al., “The effect of organic matter on chemical weathering: study of a small tropical watershed: Nsimi-Zoetele site, Cameroon,” Geochimica et Cosmochimica Acta, vol. 63, no. 23-24, pp. 4013–4035, 1999. View at Google Scholar
  49. Z. Gu, X. Wang, X. Gu et al., “Determination of stability constants for rare earth elements and fulvic acids extracted from different soils,” Talanta, vol. 53, no. 6, pp. 1163–1170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Wenming, W. Xiangke, B. Xiaoyan, W. Aixia, D. Jingzhou, and Z. Tao, “Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth,” Applied Radiation and Isotopes, vol. 54, no. 4, pp. 603–610, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Schijf and R. H. Byrne, “Stability constants for mono-and dioxalato-complexes of Y and the REE, potentially important species in groundwaters and surface freshwaters,” Geochimica et Cosmochimica Acta, vol. 65, no. 7, pp. 1037–1046, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Zhenghua, L. Jun, G. Hongyan, W. Xiaorong, and Y. Chunsheng, “Adsorption isotherms of lanthanum to soil constituents and effects of pH, EDTA and fulvic acid on adsorption of lanthanum onto goethite and humic acid,” Chemical Speciation and Bioavailability, vol. 13, no. 3, pp. 75–81, 2001. View at Google Scholar · View at Scopus
  53. D. Wenming, L. Weijuan, and T. Zuyi, “Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids II. Tb3+, Yb3+ and Gd3+ complexes in weakly alkaline conditions,” Applied Radiation and Isotopes, vol. 56, no. 6, pp. 967–974, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. J. R. Lead, J. Hamilton-Taylor, A. Peters, S. Reiner, and E. Tipping, “Europium binding by fulvic acids,” Analytica Chimica Acta, vol. 369, no. 1-2, pp. 171–180, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Tyler and T. Olsson, “Conditions related to solubility of rare and minor elements in forest soils,” Journal of Plant Nutrition and Soil Science, vol. 165, no. 5, pp. 594–601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Öhlander, M. Land, J. Ingri, and A. Widerlund, “Mobility of rare earth elements during weathering of till in northern Sweden,” Applied Geochemistry, vol. 11, no. 1-2, pp. 93–99, 1996. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Cao, Y. Chen, X. Wang, and X. Deng, “Effects of redox potential and pH value on the release of rare earth elements from soil,” Chemosphere, vol. 44, no. 4, pp. 655–661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Tyler and T. Olsson, “Concentrations of 60 elements in the soil solution as related to the soil acidity,” European Journal of Soil Science, vol. 52, no. 1, pp. 151–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. V. V. Nikonov, N. V. Lukina, and M. V. Frontas'eva, “Trace elements in Al-Fe-humus podzolic soils subjected to aerial pollution from the copper-nickel production industry in conditions of varying lithogenic background,” Eurasian Soil Science, vol. 32, no. 3, pp. 338–349, 1999. View at Google Scholar · View at Scopus
  60. B. Dupré, J. Viers, J. L. Dandurand et al., “Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of natural and spiked solutions,” Chemical Geology, vol. 160, no. 1-2, pp. 63–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Tyler and T. Olsson, “Plant uptake of major and minor mineral elements as influenced by soil acidity and liming,” Plant and Soil, vol. 230, no. 2, pp. 307–321, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Zhang and X. Q. Shan, “Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application,” Environmental Pollution, vol. 112, no. 3, pp. 395–405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Li, X. Shan, T. Zhang, and S. Zhang, “Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis,” Environmental Pollution, vol. 102, no. 2-3, pp. 269–277, 1998. View at Google Scholar · View at Scopus
  64. Y. Q. Wang, J. X. Sun, H. M. Chen, and F. Q. Guo, “Determination of the contents and distribution characteristics of REE in natural plants by NAA,” Journal of Radioanalytical and Nuclear Chemistry, vol. 219, no. 1, pp. 99–103, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. M. T. Aide, T. Alexander, L. Heberlie et al., “Soil genesis on felsic rocks in the St. Francois Mountains. I. The role of saprolite and its influence on soil properties,” Soil Science, vol. 164, no. 6, pp. 428–439, 1999. View at Google Scholar · View at Scopus
  66. M. T. Aide, T. Michael, L. Heberlie, and P. Statler, “Soil genesis on felsic rocks in the St. Francois Mountains. II. The distribution of elements and their use in understanding weathering and elemental loss during genesis,” Soil Science, vol. 164, no. 12, pp. 946–959, 1999. View at Google Scholar · View at Scopus
  67. M. T. Aide and C. Smith-Aide, “Assessing soil genesis by rare-earth elemental analysis,” Soil Science Society of America Journal, vol. 67, no. 5, pp. 1470–1476, 2003. View at Google Scholar · View at Scopus
  68. I. Olmez, E. R. Sholkovitz, D. Hermann, and R. P. Eganhouse, “Rare earth elements in sediments off southern California: a new anthropogenic indicator,” Environmental Science and Technology, vol. 25, no. 2, pp. 310–316, 1991. View at Google Scholar · View at Scopus
  69. T. Berg, O. Royset, E. Steinnes, and M. Vadset, “Atmospheric trace element deposition: principal component analysis of ICP-MS data from moss samples,” Environmental Pollution, vol. 88, no. 1, pp. 67–77, 1995. View at Publisher · View at Google Scholar · View at Scopus
  70. M. T. Aide, C. Aide, J. Dolde, and C. Guffey, “Geochemical indicators of external additions to soils in Big Bend National Park, Texas,” Soil Science, vol. 168, no. 3, pp. 200–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. R. C. Price, C. M. Gray, R. E. Wilson, F. A. Frey, and S. R. Taylor, “The effects of weathering on rare-earth element, Y and Ba abundances in Tertiary basalts from southeastern Australia,” Chemical Geology, vol. 93, no. 3-4, pp. 245–265, 1991. View at Google Scholar · View at Scopus
  72. M. A. Gouveia, M. I. Prudêncio, M. O. Figueiredo et al., “Behavior of REE and other trace and major elements during weathering of granitic rocks, Évora, Portugal,” Chemical Geology, vol. 107, no. 3-4, pp. 293–296, 1993. View at Google Scholar · View at Scopus
  73. A. W. MacFarlane, A. Danielson, H. D. Holland, and S. B. Jacobsen, “REE chemistry and Sm-Nd systematics of late Archean weathering profiles in the Fortescue Group, Western Australia,” Geochimica et Cosmochimica Acta, vol. 58, no. 7, pp. 1777–1794, 1994. View at Google Scholar · View at Scopus
  74. L. Minařík, A. Žigová, J. Bendl, P. Skřivan, and M. Št'Astný, “The behaviour of rare-earth elements and Y during the rock weathering and soil formation in the Ricany granite massif, Central Bohemia,” Science of the Total Environment, vol. 215, no. 1-2, pp. 101–111, 1998. View at Publisher · View at Google Scholar
  75. B. Bauluz, M. J. Mayayo, C. Fernandez-Nieto, and J. M. G. Lopez, “Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting,” Chemical Geology, vol. 168, no. 1-2, pp. 135–150, 2000. View at Google Scholar · View at Scopus
  76. B. Öhlander, J. Ingri, M. Land, and H. Schöberg, “Change of Sm-Nd isotope composition during weathering of till,” Geochimica et Cosmochimica Acta, vol. 64, no. 5, pp. 813–820, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. D. J. Brown, P. A. Helmke, and M. K. Clayton, “Robust geochemical indices for redox and weathering on a granitic laterite landscape in Central Uganda,” Geochimica et Cosmochimica Acta, vol. 67, no. 15, pp. 2711–2723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Tyler, “Vertical distribution of major, minor, and rare elements in a Haplic Podzol,” Geoderma, vol. 119, no. 3-4, pp. 277–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. M. T. Aide, “Elemental composition of soil nodules from two Alfisols on an alluvial terrace in Missouri,” Soil Science, vol. 170, no. 12, pp. 1022–1033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. H. W. Nesbitt, “Mobility and fractionation of rare earth elements during weathering of a granodiorite,” Nature, vol. 279, no. 5710, pp. 206–210, 1979. View at Publisher · View at Google Scholar · View at Scopus
  81. L. R. Duddy, “Redistribution and fractionation of rare-earth and other elements in a weathering profile,” Chemical Geology, vol. 30, no. 4, pp. 363–381, 1980. View at Google Scholar · View at Scopus
  82. M. T. Aide, Z. Pavich, M. E. Lilly, R. Thornton, and W. Kingery, “Plinthite formation in the coastal plain region of Mississippi,” Soil Science, vol. 169, no. 9, pp. 613–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. M. T. Aide and C. C. Smith, “Soil genesis on peralkaline felsics in Big Bend National Park, Texas,” Soil Science, vol. 166, no. 3, pp. 209–221, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. M. T. Aide and Z. Pavich, “Rare earth element mobilization and migration in a Wisconsin spodosol,” Soil Science, vol. 167, no. 10, pp. 680–691, 2002. View at Publisher · View at Google Scholar · View at Scopus