Table of Contents
ISRN Materials Science
Volume 2012, Article ID 798247, 24 pages
http://dx.doi.org/10.5402/2012/798247
Review Article

Design and Development of Degradable Polyethylenimines for Delivery of DNA and Small Interfering RNA: An Updated Review

Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea

Received 24 September 2012; Accepted 12 October 2012

Academic Editors: K. Hokamoto and A. O. Neto

Copyright © 2012 Chong-Su Cho. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Putnam, “Polymers for gene delivery across length scales,” Nature Materials, vol. 5, no. 6, pp. 439–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. D. C. Górecki, “Prospects and problems of gene therapy: an update,” Expert Opinion on Emerging Drugs, vol. 6, no. 2, pp. 187–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Sheridan, “Gene therapy finds its niche,” Nature Biotechnology, vol. 29, no. 2, pp. 121–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. E. Thomas, A. Ehrhardt, and M. A. Kay, “Progress and problems with the use of viral vectors for gene therapy,” Nature Reviews Genetics, vol. 4, no. 5, pp. 346–358, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Mintzer and E. E. Simanek, “Nonviral vectors for gene delivery,” Chemical Reviews, vol. 109, no. 2, pp. 259–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Glover, H. J. Lipps, and D. A. Jans, “Towards safe, non-viral therapeutic gene expression in humans,” Nature Reviews Genetics, vol. 6, no. 4, pp. 299–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, “Design and development of polymers for gene delivery,” Nature Reviews Drug Discovery, vol. 4, no. 7, pp. 581–593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Y. Wong, J. M. Pelet, and D. Putnam, “Polymer systems for gene delivery-Past, present, and future,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 799–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Jere, H. L. Jiang, R. Arote et al., “Degradable polyethylenimines as DNA and small interfering RNA carriers,” Expert Opinion on Drug Delivery, vol. 6, no. 8, pp. 827–834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Gao, K. S. Kim, and D. Liu, “Nonviral gene delivery: what we know and what is next,” The AAPS Journal, vol. 9, pp. E92–E104, 2007. View at Google Scholar · View at Scopus
  11. D. A. Jackson, S. Juranek, and H. J. Lipps, “Designing nonviral vectors for efficient gene transfer and long-term gene expression,” Molecular Therapy, vol. 14, no. 5, pp. 613–626, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Louise, “Nonviral vectors,” Methods in Molecular Biology, vol. 333, pp. 201–226, 2006. View at Google Scholar · View at Scopus
  13. T. Merdan, J. Kopeček, and T. Kissel, “Prospects for cationic polymers in gene and oligonucleotide therapy against cancer,” Advanced Drug Delivery Reviews, vol. 54, no. 5, pp. 715–758, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Parker, C. Newman, S. Briggs, L. Seymour, and P. J. Sheridan, “Nonviral gene delivery: techniques and implications for molecular medicine,” Expert Reviews in Molecular Medicine, vol. 5, no. 22, pp. 1–15, 2003. View at Google Scholar · View at Scopus
  15. O. Boussif, F. LezoualC'H, M. A. Zanta et al., “A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7297–7301, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Breunig, U. Lungwitz, R. Liebl et al., “Gene delivery with low molecular weight linear polyethylenimines,” Journal of Gene Medicine, vol. 7, no. 10, pp. 1287–1298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. B. Arote, D. Jere, and C. S. Cho, “Biodegradable polyester derivatives as gene carriers. Current Trends in Polymer Science,” Current Trends in Polymer Science, vol. 12, pp. 1–17, 2008. View at Google Scholar
  18. H. L. Jiang, R. Arote, D. Jere, Y. K. Kim, M. H. Cho, and C. S. Cho, “Degradable polyethylenimines as gene carriers,” Materials Science and Technology, vol. 24, no. 9, pp. 1118–1126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Gosselin, W. Guo, and R. J. Lee, “Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine,” Bioconjugate Chemistry, vol. 12, no. 6, pp. 989–994, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Petersen, T. Merdan, K. Kunath, D. Fischer, and T. Kissel, “Poly(ethylenimine-co-L-lactamide-co-succinamide): a biodegradable polyethylenimine derivative with an advantageous pH-dependent hydrolytic degradation for gene delivery,” Bioconjugate Chemistry, vol. 13, no. 4, pp. 812–821, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Forrest, J. T. Koerber, and D. W. Pack, “A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery,” Bioconjugate Chemistry, vol. 14, no. 5, pp. 934–940, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Kloeckner, E. Wagner, and M. Ogris, “Degradable gene carriers based on oligomerized polyamines,” European Journal of Pharmaceutical Sciences, vol. 29, no. 5, pp. 414–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Kloeckner, S. Bruzzano, M. Ogris, and E. Wagner, “Gene carriers based on hexanediol diacrylate linked oligoethylenimine: effect of chemical structure of polymer on biological properties,” Bioconjugate Chemistry, vol. 17, no. 5, pp. 1339–1345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Park, K. O. Han, I. K. Han et al., “Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers,” Journal of Controlled Release, vol. 105, no. 3, pp. 367–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. G. Anderson, A. Akinc, N. Hossain, and R. Langer, “Structure/property studies of polymeric gene delivery using a library of poly(β-amino esters),” Molecular Therapy, vol. 11, no. 3, pp. 426–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. D. C. Wu, Y. Liu, X. Jiang, C. B. He, S. H. Goh, and K. W. Leong, “Hyperbranched poly(amino ester)s with different terminal amine groups for DNA delivery,” Biomacromolecules, vol. 7, no. 6, pp. 1879–1883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. H. Ahn, S. Y. Chae, Y. H. Bae, and S. W. Kim, “Biodegradable poly(ethylenimine) for plasmid DNA delivery,” Journal of Controlled Release, vol. 80, no. 1–3, pp. 273–282, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. H. Kim, J. H. Park, M. Lee, Y. H. Kim, T. G. Park, and S. W. Kim, “Polyethylenimine with acid-labile linkages as a biodegradable gene carrier,” Journal of Controlled Release, vol. 103, no. 1, pp. 209–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Lin and J. F. J. Engbersen, “Effect of chemical functionalities in poly(amido amine)s for non-viral gene transfection,” Journal of Controlled Release, vol. 132, no. 3, pp. 267–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. W. Zhang and S. V. Vinogradov, “Short biodegradable polyamines for gene delivery and transfection of brain capillary endothelial cells,” Journal of Controlled Release, vol. 143, no. 3, pp. 359–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. X. Sun, X. Zeng, Q. F. Meng, X. Z. Zhang, S. X. Cheng, and R. X. Zhuo, “The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes,” Biomaterials, vol. 29, no. 32, pp. 4356–4365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Peng, Z. Zhong, and R. Zhuo, “Disulfide cross-linked polyethylenimines (PEI) prepared via thiolation of low molecular weight PEI as highly efficient gene vectors,” Bioconjugate Chemistry, vol. 19, no. 2, pp. 499–506, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Breunig, U. Lungwitz, R. Liebl, and A. Goepferich, “Breaking up the correlation between efficacy and toxicity for nonviral gene delivery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 36, pp. 14454–14459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. T. H. Kim, S. E. Cook, R. B. Arote et al., “A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier,” Macromolecular Bioscience, vol. 7, no. 5, pp. 611–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. R. P. Arote, T. H. Kim, Y. K. Kim et al., “A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier,” Biomaterials, vol. 28, no. 4, pp. 735–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. B. Arote, S. K. Hwang, M. K. Yoo et al., “Biodegradable poly(ester amine) based on glycerol dimethacrylate and polyethylenimine as a gene carrier,” Journal of Gene Medicine, vol. 10, no. 11, pp. 1223–1235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Islam, C. H. Yun, Y. J. Choi et al., “Accelerated gene transfer through a polysorbitol-based transporter mechanism,” Biomaterials, vol. 32, pp. 9908–9924, 2011. View at Google Scholar
  38. G. W. Moeckel, L. Zhang, A. B. Fogo, C. M. Hao, A. Pozzi, and M. D. Breyer, “COX2 activity promotes organic osmolyte accumulation and adaptation of renal medullary interstitial cells to hypertonic stress,” Journal of Biological Chemistry, vol. 278, no. 21, pp. 19352–19357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. T. X. Yang, Y. N. Huang, L. E. Heasley, T. Berl, J. B. Schnermann, and J. P. Briggs, “MAPK mediation of hypertonicity-stimulated cyclooxygenase-2 expression in renal medullary collecting duct cells,” Journal of Biological Chemistry, vol. 275, no. 30, pp. 23281–23286, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. S. H. Pun, N. C. Bellocq, A. Liu et al., “Cyclodextrin-modified polyethylenimine polymers for gene delivery,” Bioconjugate Chemistry, vol. 15, no. 4, pp. 831–840, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. G. P. Tang, H. Y. Guo, F. Alexis et al., “Low molecular weight polyethylenimines linked by β-cyclodextrin for gene transfer into the nervous system,” Journal of Gene Medicine, vol. 8, no. 6, pp. 736–744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. C. A. Yang, H. Z. Li, S. H. Goh, and J. Li, “Cationic star polymers consisting of α-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors,” Biomaterials, vol. 28, no. 21, pp. 3245–3254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. T. H. Kim, S. I. Kim, T. Akaike, and C. S. Cho, “Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes,” Journal of Controlled Release, vol. 105, no. 3, pp. 354–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Wong, G. B. Sun, X. Q. Zhang et al., “PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo,” Bioconjugate Chemistry, vol. 17, no. 1, pp. 152–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. H. L. Jiang, Y. K. Kim, R. Arote et al., “Chitosan-graft-polyethylenimine as a gene carrier,” Journal of Controlled Release, vol. 117, no. 2, pp. 273–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. L. Lou, Y. S. Peng, B. H. Chen, L. F. Wang, and K. W. Leong, “Poly(ethylene imine)-g-chitosan using EX-810 as a spacer for nonviral gene delivery vectors,” Journal of Biomedical Materials Research A, vol. 88, no. 4, pp. 1058–1068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Lu, X. D. Xu, X. Z. Zhang, S. X. Cheng, and R. X. Zhuo, “Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies,” Biomacromolecules, vol. 9, no. 10, pp. 2594–2600, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. X. Sun, W. Xiao, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors,” Journal of Controlled Release, vol. 128, no. 2, pp. 171–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. X. Sun, X. Z. Zhang, H. Cheng, S. X. Cheng, and R. X. Zhuo, “A low-toxic and efficient gene vector: carboxymethyl dextran-graft- polyethylenimine,” Journal of Biomedical Materials Research A, vol. 84, no. 4, pp. 1102–1110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. F. Zhang, C. H. Yang, Y. Duan et al., “Poly(ethylene glycol) analogs grafted with low molecular weight poly (ethylene imine) as non-viral gene vectors,” Acta Biomaterialia, vol. 6, no. 7, pp. 2650–2657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. H. Yu, J. S. Quan, J. Huang et al., “α,β-Poly(l-aspartate-graft-PEI): a pseudo-branched PEI as a gene carrier with low toxicity and high transfection efficiency,” Acta Biomaterialia, vol. 5, no. 7, pp. 2485–2494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. H. Yu, J. S. Quan, J. T. Kwon et al., “Fabrication of a novel core-shell gene delivery system based on a brush-like polycation of α, β-poly (L-aspartate-graft-PEI),” Pharmaceutical Research, vol. 26, no. 9, pp. 2152–2163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. R. Park, H. W. Kim, C. S. Hwang et al., “Highly efficient gene transfer with degradable poly(ester amine) based on poly(ethylene glycol) diacrylate and polyethylenimine in vitro and in vivo,” The Journal of Gene Medicine, vol. 10, no. 2, pp. 198–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. H. Yu, J. S. Quan, J. Huang, J. W. Nah, and C. S. Cho, “Degradable poly(amino ester) based on poly(ethylene glycol) dimethacrylate and polyethylenimine as a gene carrier: molecular weight of PEI affects transfection efficiency,” Journal of Materials Science, vol. 20, no. 12, pp. 2501–2510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. P. Luu, J. Y. Shin, Y. K. Kim et al., “High gene transfer by the osmotic polysorbitol-mediated transporter through the selective caveolae endocytic pathway,” Molecular Pharmaceutics, vol. 9, pp. 2206–2218, 2012. View at Google Scholar
  56. T. E. Park, B. Kang, Y. K. Kim et al., “Selective stimulation of caveolae-mediated endocytosis by an osmotic polymannitol-based gene transporter,” Biomaterials, vol. 33, pp. 7272–7281, 2012. View at Google Scholar
  57. C. Lin and J. F. J. Engbersen, “The role of the disulfide group in disulfide-based polymeric gene carriers,” Expert Opinion on Drug Delivery, vol. 6, no. 4, pp. 421–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Wu, Y. Z. Fang, S. Yang, J. R. Lupton, and N. D. Turner, “Glutathione metabolism and its implications for health,” The Journal of Nutrition, vol. 134, no. 3, pp. 489–492, 2004. View at Google Scholar · View at Scopus
  59. S. Bauhuber, R. Liebl, L. Tomasetti, R. Rachel, A. Goepferich, and M. Breunig, “A library of strictly linear poly(ethylene glycol)-poly(ethylene imine) diblock copolymers to perform structure-function relationship of non-viral gene carriers,” Journal of Controlled Release, vol. 162, pp. 446–455, 2012. View at Google Scholar
  60. G. Zhang, J. Liu, Q. Yang, R. Zhuo, and X. Jiang, “Disulfide-containing brushed polyethylenimine derivative synthesized by click chemistry for nonviral gene delivery,” Bioconjug Chemistry, vol. 23, pp. 1290–1299, 2012. View at Google Scholar
  61. Y. Ping, C. Liu, Z. Zhang, K. L. Liu, J. Chen, and J. Li, “Chitosan-graft-(PEI-beta-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery,” Biomaterials, vol. 32, pp. 8328–8341, 2011. View at Google Scholar
  62. D. H. Jiang and A. K. Salem, “Optimized dextran-polyethylenimine conjugates are efficient non-viral vectors with reduced cytotoxicity when used in serum containing environments,” International Journal of Pharmaceutics, vol. 427, pp. 71–79, 2012. View at Google Scholar
  63. S. L. Xu, M. Chen, Y. Yao et al., “Novel poly(ethylene imine) biscarbamate conjugate as an efficient and nontoxic gene delivery system,” Journal of Controlled Release, vol. 130, no. 1, pp. 64–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Y. Liu, W. Y. Ho, W. J. Hung, and M. D. Shau, “The characteristics and transfection efficiency of cationic poly (ester-co-urethane)—short chain PEI conjugates self-assembled with DNA,” Biomaterials, vol. 30, no. 34, pp. 6665–6673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Zhao, T. Gong, D. Zhu, Z. Zhang, and X. Sun, “Comprehensive comparison of two new biodegradable gene carriers,” International Journal of Pharmaceutics, vol. 413, no. 1-2, pp. 260–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Wang, J. Su, F. Wu et al., “Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery,” International Journal of Nanomedicine, vol. 7, pp. 693–704, 2012. View at Google Scholar
  67. M. P. Xiong, M. Laird Forrest, G. Ton, A. Zhao, N. M. Davies, and G. S. Kwon, “Poly(aspartate-g-PEI800), a polyethylenimine analogue of low toxicity and high transfection efficiency for gene delivery,” Biomaterials, vol. 28, no. 32, pp. 4889–4900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. B. Lu, Y. X. Sun, Y. Q. Li, X. Z. Zhang, and R. X. Zhuo, “N-Succinyl-chitosan grafted with low molecular weight polyethylenimine as a serum-resistant gene vector,” Molecular BioSystems, vol. 5, no. 6, pp. 629–637, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. T. Wen, S. R. Pan, X. Luo, X. Zhang, W. Zhang, and M. Feng, “A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector,” Bioconjugate Chemistry, vol. 20, no. 2, pp. 322–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Namgung, J. Kim, K. Singha, C. H. Kim, and W. J. Kim, “Synergistic effect of low cytotoxic linear polyethylenimine and multiarm polyethylene glycol: study of physicochemical properties and in vitro gene transfection,” Molecular Pharmaceutics, vol. 6, no. 6, pp. 1826–1835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. M. S. Shim and Y. J. Kwon, “Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine,” Biomacromolecules, vol. 9, no. 2, pp. 444–455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. M. S. Shim and Y. J. Kwon, “Controlled cytoplasmic and nuclear localization of plasmid DNA and siRNA by differentially tailored polyethylenimine,” Journal of Controlled Release, vol. 133, no. 3, pp. 206–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. E. Newfeld and G. Ashwell, “Carbohydrate recognizable systems for receptor-mediated pinocytosis,” in Biochemistry of Glycoprotein and Proteoglycans, W. Lennartz, Ed., pp. 241–266, Plenum Press, New York, NY, USA, 1979. View at Google Scholar
  74. H. L. Jiang, J. T. Kwon, Y. K. Kim et al., “Galactosylated chitosan-graft-polyethylenimine as a gene carrier for hepatocyte targeting,” Gene Therapy, vol. 14, no. 19, pp. 1389–1398, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. H. L. Jiang, J. T. Kwon, E. M. Kim et al., “Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting,” Journal of Controlled Release, vol. 131, no. 2, pp. 150–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. S. J. Sung, S. H. Min, K. Y. Cho et al., “Effect of polyethylene glycol on gene delivery of polyethylenimine,” Biological and Pharmaceutical Bulletin, vol. 26, no. 4, pp. 492–500, 2003. View at Google Scholar · View at Scopus
  77. W. P. Jian, W. J. Swiggard, C. Heufler et al., “The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing,” Nature, vol. 375, no. 6527, pp. 151–155, 1995. View at Google Scholar · View at Scopus
  78. H. L. Jiang, Y. K. Kim, R. Arote et al., “Mannosylated chitosan-graft-polyethylenimine as a gene carrier for Raw 264.7 cell targeting,” International Journal of Pharmaceutics, vol. 375, no. 1-2, pp. 133–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. A. C. Antony, “Folate receptors,” Annual Review of Nutrition, vol. 16, pp. 501–521, 1996. View at Google Scholar · View at Scopus
  80. H. L. Jiang, C. X. Xu, Y. K. Kim et al., “The suppression of lung tumorigenesis by aerosol-delivered folate-chitosan-graft-polyethylenimine/Akt1 shRNA complexes through the Akt signaling pathway,” Biomaterials, vol. 30, no. 29, pp. 5844–5852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. R. B. Arote, S. K. Hwang, H. T. Lim et al., “The therapeutic efficiency of FP-PEA/TAM67 gene complexes via folate receptor-mediated endocytosis in a xenograft mice model,” Biomaterials, vol. 31, no. 8, pp. 2435–2445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. Z. M. Qian, H. Li, H. Sun, and K. Ho, “Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway,” Pharmacological Reviews, vol. 54, no. 4, pp. 561–587, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. X. Zeng, Y. X. Sun, W. Qu, X. Z. Zhang, and R. X. Zhuo, “Biotinylated transferrin/avidin/biotinylated disulfide containing PEI bioconjugates mediated p53 gene delivery system for tumor targeted transfection,” Biomaterials, vol. 31, no. 17, pp. 4771–4780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. D. W. Hwang, S. Son, J. Jang et al., “A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA,” Biomaterials, vol. 32, no. 21, pp. 4968–4975, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. H. L. Huang, H. Yu, G. P. Tang, Q. Q. Wang, and J. Li, “Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-γ-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector,” Biomaterials, vol. 31, no. 7, pp. 1830–1838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Liu, Z. H. Li, F. J. Xu et al., “An oligopeptide ligand-mediated therapeutic gene nanocomplex for liver cancer-targeted therapy,” Biomaterials, vol. 33, pp. 2240–2250, 2012. View at Google Scholar
  87. K. H. Liu, X. Y. Wang, W. Fan et al., “Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector,” International Journal of Nanomedicine, vol. 7, pp. 1149–1162, 2012. View at Google Scholar
  88. A. Dautry-Varsat, “Receptor-mediated endocytosis: the intracellular journey of transferrin and its receptor,” Biochimie, vol. 68, no. 3, pp. 375–381, 1986. View at Google Scholar · View at Scopus
  89. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells,” Nature, vol. 411, no. 6836, pp. 494–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. S. M. Elbashir, W. Lendeckel, and T. Tuschl, “RNA interference is mediated by 21-and 22-nucleotide RNAs,” Genes and Development, vol. 15, no. 2, pp. 188–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. A. P. McCaffrey, L. Meuse, T. T. T. Pham, D. S. Conklin, G. J. Hannon, and M. A. Kay, “RNA interference in adult mice,” Nature, vol. 418, no. 6893, pp. 38–39, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Leuschner, P. Dutta, R. Gorbatov et al., “Therapeutic siRNA silencing in inflammatory monocytes in mice,” Nature Biotechnology, vol. 29, pp. 1005–1010, 2011. View at Google Scholar
  94. K. T. Love, K. P. Mahon, C. G. Levins et al., “Lipid-like materials for low-dose, in vivo gene silencing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 1864–1869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nature Review Drug Discovery, vol. 8, pp. 129–138, 2009. View at Google Scholar
  96. P. J. Tarcha, J. Pelisek, T. Merdan et al., “Synthesis and characterization of chemically condensed oligoethylenimine containing beta-aminopropionamide linkages for siRNA delivery,” Biomaterials, vol. 28, no. 25, pp. 3731–3740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Breunig, C. Hozsa, U. Lungwitz et al., “Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo,” Journal of Controlled Release, vol. 130, no. 1, pp. 57–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. M. S. Shim and Y. J. Kwon, “Acid-responsive linear polyethylenimine for efficient, specific, and biocompatible siRNA delivery,” Bioconjugate Chemistry, vol. 20, no. 3, pp. 488–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Jere, C. X. Xu, R. Arote, C. H. Yun, M. H. Cho, and C. S. Cho, “Poly(β-amino ester) as a carrier for si/shRNA delivery in lung cancer cells,” Biomaterials, vol. 29, no. 16, pp. 2535–2547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. I. Vivanco and C. L. Sawyers, “The phosphatidylinositol 3-kinase-AKT pathway in human cancer,” Nature Reviews Cancer, vol. 2, no. 7, pp. 489–501, 2002. View at Google Scholar · View at Scopus
  101. M. A. Lawlor and D. R. Alessi, “PKB/Akt: a key mediator of cell proliferation, survival and insulin responses?” Journal of Cell Science, vol. 114, no. 16, pp. 2903–2910, 2001. View at Google Scholar · View at Scopus
  102. C. X. Xu, D. Jere, H. Jin et al., “Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 1, pp. 60–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. K. Kim, Q. P. Luu, M. A. Islam et al., “Degradable polyethylenimine derivatives as gene carriers,” Nano Life, vol. 2, Article ID 1230004, 2012. View at Google Scholar
  104. M. A. Gosselin, W. Guo, and R. J. Lee, “Incorporation of reversibly cross-linked polyplexes into LPDII vectors for gene delivery,” Bioconjugate Chemistry, vol. 13, no. 5, pp. 1044–1053, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. L. V. Christensen, C. W. Chang, J. K. Won et al., “Reducible poly(amido ethylenimine)s designed for triggered intracellular gene delivery,” Bioconjugate Chemistry, vol. 17, no. 5, pp. 1233–1240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Lee, H. Mo, H. Koo et al., “Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery,” Bioconjugate Chemistry, vol. 18, no. 1, pp. 13–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Liu, X. L. Jiang, L. Xu, X. M. Wang, W. E. Hennink, and R. X. Zhuo, “Novel reduction-responsive cross-linked polyethylenimine derivatives by click chemistry for nonviral gene delivery,” Bioconjugate Chemistry, vol. 21, no. 10, pp. 1827–1835, 2010. View at Publisher · View at Google Scholar · View at Scopus