Table of Contents
ISRN Analytical Chemistry
Volume 2012 (2012), Article ID 809256, 5 pages
http://dx.doi.org/10.5402/2012/809256
Research Article

Determination of Hesperetin in Pericarpium Citri Reticulatae and Human Serum Using Flow Injection Chemiluminescence

1Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
2Shaanxi General Team of China Construction Materials and Geological Prospecting Center, Xi'an 710003, China

Received 11 March 2012; Accepted 6 May 2012

Academic Editors: M. E. Diaz-Garcia, P. Kingshott, M. Özgür, and M. L. Villarreal

Copyright © 2012 Jiajia Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. A. Tomás-Barberán and M. N. Clifford, “Flavanones, chalcones and dihydrochalcones-nature, occurrence and dietary burden,” Journal of the Science of Food and Agriculture, vol. 80, no. 7, pp. 1073–1080, 2000. View at Google Scholar
  2. Y. R. Jin, X. H. Han, Y. H. Zhang et al., “Antiplatelet activity of hesperetin, a bioflavonoid, is mainly mediated by inhibition of PLC-γ2 phosphorylation and cyclooxygenase-1 activity,” Atherosclerosis, vol. 194, no. 1, pp. 144–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Benavente-García and J. Castillo, “Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity,” Journal of Agricultural and Food Chemistry, vol. 56, no. 15, pp. 6185–6205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. P. Trivedi, S. Kushwaha, D. N. Tripathi, and G. B. Jena, “Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat,” Cardiovascular Toxicology, vol. 11, no. 3, pp. 215–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. S. Cho, “Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin,” Archives of Pharmacal Research, vol. 29, no. 8, pp. 699–706, 2006. View at Google Scholar · View at Scopus
  6. H. Scarborough, “Observations on the nature of vitamin P and the vitamin P potency of certain foodstuffs,” Biochemical Journal, vol. 39, pp. 271–278, 1945. View at Google Scholar
  7. A. Garg, S. Garg, L. J. D. Zaneveld, and A. K. Singla, “Chemistry and pharmacology of the Citrus bioflavonoid hesperidin,” Phytotherapy Research, vol. 15, no. 8, pp. 655–669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Aranganathan, J. P. Selvam, and N. Nalini, “Effect of hesperetin, a citrus flavonoid, on bacterial enzymes and carcinogen-induced aberrant crypt foci in colon cancer rats: a dose-dependent study,” Journal of Pharmacy and Pharmacology, vol. 60, no. 10, pp. 1385–1392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Rainey-Smith, L. W. Schroetke, P. Bahia et al., “Neuroprotective effects of hesperetin in mouse primary neurones are independent of CREB activation,” Neuroscience Letters, vol. 438, no. 1, pp. 29–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. R. Jin, X. H. Han, Y. H. Zhang et al., “Hesperetin, a bioflavonoid, inhibits rat aortic vascular smooth muscle cells proliferation by arresting cell cycle,” Journal of Cellular Biochemistry, vol. 104, no. 1, pp. 1–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Tong, D. D. Zhou, J. Gao, Y. H Zhu, H. Sun, and K. S. Bi, “Simultaneous determination of naringin, hesperidin, neohesperidin, naringenin and hesperetin of Fractus aurantii extract in rat plasma by liquid chromatography tandem mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 58, pp. 58–64, 2012. View at Google Scholar
  12. K. Si-Ahmed, F. Tazerouti, A. Y. Badjah-Hadj et al., “Analysis of hesperetin enantiomers in human urine after ingestion of blood orange juice by using nano-liquid chromatography,” Journal of Pharmaceutical and Biomedical Analysis, vol. 51, no. 1, pp. 225–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Yáñez, X. W. Teng, K. A. Roupe, and N. M. Davies, “Stereospecific high-performance liquid chromatographic analysis of hesperetin in biological matrices,” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 3, pp. 591–595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Spanakis, S. Kasmas, and I. Niopas, “Simultaneous determination of the flavonoid aglycones diosmetin and hesperetin in human plasma and urine by a validated GC/MS method: In vivo metabolic reduction of diosmetin to hesperetin,” Biomedical Chromatography, vol. 23, no. 2, pp. 124–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Lu, C. Wu, and Z. Yuan, “Determination of hesperetin, cinnamic acid and nicotinic acid in propolis with micellar electrokinetic capillary chromatography,” Fitoterapia, vol. 75, no. 3-4, pp. 267–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. X. B. Liu, Y. J. Li, X. Liu, and J. Cao, “Study of the extraction technology of hesperidin in Pericarpium Citri Reticulatae,” Journal of GuiYang Medical College, vol. 31, no. 6, pp. 586–588, 2006. View at Google Scholar
  17. M. Y. Zhang, Q. L. Xia, J. R. Xing, Y. Yang, and S. M. Lu, “Acid-catalyzed hydrolysis of hesperetin,” Food Science, vol. 31, no. 6, pp. 60–64, 2010. View at Google Scholar
  18. W. R. Seitz, “Determination of trace amounts of chromium (III) using chemiluminescence analysis,” Analytical Chemistry, vol. 44, no. 6, pp. 957–963, 1972. View at Google Scholar · View at Scopus
  19. G. Zheng, D. Yang, D. Wang, F. Zhou, X. Yang, and L. Jiang, “Simultaneous determination of five bioactive flavonoids in Pericarpium Citri Reticulatae from China by high-performance liquid chromatography with dual wavelength detection,” Journal of Agricultural and Food Chemistry, vol. 57, no. 15, pp. 6552–6557, 2009. View at Publisher · View at Google Scholar · View at Scopus