Table of Contents
ISRN Oncology
Volume 2012 (2012), Article ID 815234, 12 pages
http://dx.doi.org/10.5402/2012/815234
Clinical Study

Diagnostic Role of 18F-FECH-PET/CT Compared with Bone Scan in Evaluating the Prostate Cancer Patients Referring with Biochemical Recurrence

1Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
2Department of Urology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
3Department of Nuclear Medicine and Radiology, Knappschaft Hospital, 66280 Sulzbach, Germany

Received 11 August 2012; Accepted 29 September 2012

Academic Editors: G. Gatti and K. Sonoda

Copyright © 2012 Mustafa Takesh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. J. Lavery, J. S. Brajtbord, A. W. Levinson, F. Nabizada-Pace, M. E. Pollard, and D. B. Samadi, “Unnecessary imaging for the staging of low-risk prostate cancer is common,” Urology, vol. 77, no. 2, pp. 274–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Zissimopoulos, A. Bantis, K. Stellos, G. Petrakis, and D. Matthaios, “Association between bone scintigraphy and serum levels of procollagen (I) and PSA in the detection of bone disease in prostate cancer patients,” Journal of B.U.ON., vol. 13, no. 1, pp. 69–74, 2008. View at Google Scholar · View at Scopus
  3. A. Zissimopoulos, C. Stellos, G. Petrakis, and N. Baziotis, “Correlation of procollagen (I) with prostate specific antigen and bone scan for the diagnosis of bone metastases in patients with prostate carcinoma,” Hellenic Journal of Nuclear Medicine, vol. 7, no. 3, pp. 162–167, 2004. View at Google Scholar · View at Scopus
  4. T. Hara, N. Kosaka, and H. Kishi, “Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging,” Journal of Nuclear Medicine, vol. 43, no. 2, pp. 187–199, 2002. View at Google Scholar · View at Scopus
  5. M. Beheshti, L. Imamovic, G. Broinger et al., “18F choline PET0/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients,” Radiology, vol. 254, no. 3, pp. 925–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Breeuwsma, J. Pruim, M. M. Jongen et al., “In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 6, pp. 668–673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. H. Zheng, T. A. Gardner, S. Raikwar et al., “[11C]Choline as a PET biomarker for assessment of prostate cancer tumor models,” Bioorganic and Medicinal Chemistry, vol. 12, no. 11, pp. 2887–2893, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Hara, N. Kosaka, and H. Kishi, “PET imaging of prostate cancer using carbon-11-choline,” Journal of Nuclear Medicine, vol. 39, no. 6, pp. 990–995, 1998. View at Google Scholar · View at Scopus
  9. T. Özülker, A. Küçüköz Uzun, F. Özülker, and T. Özpaçac, “Comparison of 18F-FDG-PET/CT with 99mTc-MDP bone scintigraphy for the detection of bone metastases in cancer patients,” Nuclear Medicine Communications, vol. 31, no. 6, pp. 597–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kato, T. Miyazaki, M. Nakajima et al., “Comparison between whole-body positron emission tomography and bone scintigraphy in evaluating bony metastases of esophageal carcinomas,” Anticancer Research, vol. 25, no. 6, pp. 4439–4444, 2005. View at Google Scholar · View at Scopus
  11. G. S. P. Meirelles, H. Schöder, G. C. Ravizzini et al., “Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer,” Clinical Cancer Research, vol. 16, no. 24, pp. 6093–6099, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Cheng, Y. Li, Z. Xu, L. Bao, D. Li, and J. Wang, “Comparison of 18F-FDG PET/CT with bone scintigraphy for detection of bone metastasis: a meta-analysis,” Acta Radiologica, vol. 52, no. 7, pp. 779–787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. B. P. Tiwari, S. Jangra, N. Nair, H. B. Tongaonkar, and S. Basu, “Complimentary role of FDG-PET imaging and skeletal scintigraphy in the evaluation of patients of prostate carcinoma,” Indian Journal of Cancer, vol. 47, no. 4, pp. 385–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Beheshti, R. Vali, P. Waldenberger et al., “Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 10, pp. 1766–1774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. McCarthy, T. Siew, A. Campbell et al., “18F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 1, pp. 14–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Beheshti, W. Langsteger, and I. Fogelman, “Prostate cancer: role of SPECT and PET in imaging bone metastases,” Seminars in Nuclear Medicine, vol. 39, no. 6, pp. 396–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Savelli, L. Maffioli, M. Maccauro, E. de Deckere, and E. Bombardieri, “Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions,” Quarterly Journal of Nuclear Medicine, vol. 45, no. 1, pp. 27–37, 2001. View at Google Scholar · View at Scopus
  18. K. Kato, K. Nagahama, Y. Yagibashi, M. Yamamoto, H. Kanamaru, and H. Hirata, “A case of prostate cancer with diseminated carcinomatosis of bone marrow which responded to zoledronic acid,” Acta Urologica Japonica, vol. 57, no. 6, pp. 331–335, 2011. View at Google Scholar · View at Scopus
  19. A. Aydin, J. Q. Yu, H. Zhuang, and A. Alavi, “Detection of bone marrow metastases by FDG-PET and missed by bone scintigraphy in widespread melanoma,” Clinical Nuclear Medicine, vol. 30, no. 9, pp. 606–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Beheshti, R. Vali, P. Waldenberger et al., “The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT,” Molecular Imaging and Biology, vol. 11, no. 6, pp. 446–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. J. Pollen, K. F. Witztum, and W. L. Ashburn, “The flare phenomenon on radionuclide bone scan in metastatic prostate cancer,” American Journal of Roentgenology, vol. 142, no. 4, pp. 773–776, 1984. View at Google Scholar · View at Scopus
  22. R. E. Coleman, G. Mashiter, K. B. Whitaker, D. W. Moss, R. D. Rubens, and I. Fogelman, “Bone scan flare predicts successful systemic therapy for bone metastases,” Journal of Nuclear Medicine, vol. 29, no. 8, pp. 1354–1359, 1988. View at Google Scholar · View at Scopus
  23. J. A. Schneider, C. R. Divgi, A. M. Scott et al., “Flare on bone scintigraphy following Taxol chemotherapy for metastatic breast cancer,” Journal of Nuclear Medicine, vol. 35, no. 11, pp. 1748–1752, 1994. View at Google Scholar · View at Scopus