Table of Contents
ISRN Ceramics
Volume 2012 (2012), Article ID 816902, 5 pages
http://dx.doi.org/10.5402/2012/816902
Research Article

Modeling of Viscosity and Thermal Expansion of Bioactive Glasses

Department of Materials Engineering, University of Technology, Baghdad 10066, Iraq

Received 9 October 2012; Accepted 8 November 2012

Academic Editors: P. Valerio and C.-F. Yang

Copyright © 2012 Saad B. H. Farid. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. V. Mazurin, “History, perspectives, and problems of measurement and calculation of glass properties,” in Proceedings of the 3rd Balkan Conference on Glass Science and Technology, pp. 1–8, Varna, Bulgaria, 2005.
  2. O. V. Mazurin, “Glass properties: compilation, evaluation, and prediction,” Journal of Non-Crystalline Solids, vol. 351, no. 12-13, pp. 1103–1112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. L. Hench, “The story of bioglass,” Journal of Materials Science, vol. 17, no. 11, pp. 967–978, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Saiz, M. Goldman, J. M. Gomez-Vega, A. P. Tomsia, G. W. Marshall, and S. J. Marshall, “In vitro behavior of silicate glass coatings on Ti6Al4V,” Biomaterials, vol. 23, no. 17, pp. 3749–3756, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Gomez-Vega, E. Saiz, A. P. Tomsia et al., “Novel bioactive functionally graded coatings on Ti6Al4V,” Advanced Materials, vol. 12, no. 12, pp. 894–898, 2000. View at Google Scholar · View at Scopus
  6. E. Vedel, H. Arstila, H. Ylänen, L. Hupa, and M. Hupa, “Predicting physical and chemical properties of bioactive glasses from chemical composition—part 1: viscosity characteristics,” Glass Technology Part A, vol. 49, no. 6, pp. 251–259, 2008. View at Google Scholar · View at Scopus
  7. E. Vedel, D. Zhang, H. Arstila, L. Hupa, and M. Hupa, “Predicting physical and chemical properties of bioactive glasses from chemical composition—part 4: tailoring compositions with desired properties,” Glass Technology Part A, vol. 50, no. 1, pp. 9–16, 2009. View at Google Scholar · View at Scopus
  8. K. Yang, W. H. Zheng, and J. S. Cheng, “Effect of Li2O on viscosity and thermal expansion of silicate glass,” Advanced Materials Research, vol. 403–408, p. 7074, 2011. View at Google Scholar
  9. M. Wang, J. Cheng, M. Li, F. He, and W. Deng, “Viscosity and thermal expansion of soda-lime-silica glass doped with Gd2O3 and Y2O3,” Solid State Sciences, vol. 14, no. 8, pp. 1233–1237, 2012. View at Google Scholar
  10. D. Bellucci, V. Cannillo, and A. Sola, “Coefficient of thermal expansion of bioactive glasses: available literature data and analytical equation estimates,” Ceramics International, vol. 37, no. 8, pp. 2963–2972, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Urbain, F. Cambier, M. Deletter, and M. R. Anseau, “Viscosity of silicate melts,” Transactions & Journal of the British Ceramic Society, vol. 80, pp. 139–141, 1981. View at Google Scholar · View at Scopus
  12. I. N'dala, F. Cambier, M. R. Anseau, and G. Urbain, “Viscosity of liquid feldspars—part I: viscosity measurements,” Journal of the British Ceramic Society, vol. 83, no. 4, pp. 105–107, 1984. View at Google Scholar · View at Scopus
  13. C. M. Kuppinger and J. E. Shelby, “Viscosity and thermal expansion of mixed alkali sodium potassium borate glasses,” Journal of the American Ceramic Society, vol. 68, no. 9, pp. 463–467, 1985. View at Google Scholar · View at Scopus
  14. R. J. Vanderbei, Linear Programming: Foundations and Extensions, Princeton University, Princeton, NJ, USA, 2001.
  15. J. R. Taylor and A. C. Bull, Ceramics Glaze Technology, Pergamon Press, New York, NY, USA, 1986.