Table of Contents
ISRN Biomathematics
Volume 2012, Article ID 818492, 12 pages
http://dx.doi.org/10.5402/2012/818492
Research Article

An Integrated Multiscale Mechanistic Model for Cancer Drug Therapy

1Department of Radiology, The Methodist Hospital Research Institute, Weill Cornell Medical College of Cornell University, Houston TX 77030, USA
2Department of Automation, University of Science and Technology of China, Hefei 230026, China
3Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China
4Department of Computer Science and Technology, Tongji University, Shanghai 200092, China

Received 14 August 2011; Accepted 26 September 2011

Academic Editor: A. Aouacheria

Copyright © 2012 Lei Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Chaikin, G. R. Rhodes, R. Bruno, S. Rohatagi, and C. Natarajan, “Pharmacokinetics/pharmacodynamics in drug development: an industrial perspective,” Journal of Clinical Pharmacology, vol. 40, no. 12, pp. 1428–1438, 2000. View at Google Scholar · View at Scopus
  2. J. Dingemanse and S. Appel-Dingemanse, “Integrated pharmacokinetics and pharmacodynamics in drug development,” Clinical Pharmacokinetics, vol. 46, no. 9, pp. 713–737, 2007. View at Google Scholar
  3. J. Y. Chien, S. Friedrich, M. A. Heathman, D. P. de Alwis, and V. Sinha, “Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation,” AAPS Journal, vol. 7, no. 3, pp. E544–E559, 2005. View at Google Scholar · View at Scopus
  4. G. L. Dickinson, S. Rezaee, N. J. Proctor, M. S. Lennard, G. T. Tucker, and A. Rostami-Hodjegan, “Incorporating in vitro information on drug metabolism into clinical trial simulations to assess the effect of CYP2D6 polymorphism on pharmacokinetics and pharmacodynamics: dextromethorphan as a model application,” Journal of Clinical Pharmacology, vol. 47, no. 2, pp. 175–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Bangs, “Predictive biosimulation and virtual patients in pharmaceutical R and D,” Studies in Health Technology and Informatics, vol. 111, pp. 37–42, 2005. View at Google Scholar · View at Scopus
  6. U. Korf, C. Lobke, O. Sahin et al., “Reverse-phase protein arrays for application-orientated cancer research,” Proteomics—Clinical Applications, vol. 3, no. 10, pp. 1140–1150, Oct 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Peng, J. Wen, H. Li, J. Chang, and X. Zhou, “Drug inhibition profile prediction for NFκB pathway in multiple myeloma,” PLoS ONE, vol. 6, no. 3, article e14750, 2011. View at Publisher · View at Google Scholar
  8. H. M. Peng, J. G. Wen, C. C. Chang, and X. B. Zhou, “Systematic modeling study on mechanism of p38 MAPK activation in MDS,” in The Eighteenth International Conference on Intelligent Systems for Molecular Biology (ISMB 2010), Boston,USA, 2010.
  9. A. P. Li, “Screening for human ADME/Tox drug properties in drug discovery,” Drug Discovery Today, vol. 6, no. 7, pp. 357–366, 2001. View at Google Scholar
  10. S. A. Roberts, “Drug metabolism and pharmacokinetics in drug discovery,” Current Opinion in Drug Discovery and Development, vol. 6, no. 1, pp. 66–80, 2003. View at Google Scholar · View at Scopus
  11. S. Ramat and G. Magenes, “Latency detection in motor responses: a model-based approach with genetic algorithm optimization,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 10, pp. 2015–2023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Anderson and M. A. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” Bulletin of Mathematical Biology, vol. 60, no. 5, pp. 857–899, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Chaplain, S. R. McDougall, and A. R. Anderson, “Mathematical modeling of tumor-induced angiogenesis,” Annual Review of Biomedical Engineering, vol. 8, pp. 233–257, 2006. View at Publisher · View at Google Scholar
  14. C. C. Wang, J. Li, C. S. Teo, and T. Lee, “The delivery of BCNU to brain tumors,” Journal of Controlled Release, vol. 61, no. 1-2, pp. 21–41, 1999. View at Publisher · View at Google Scholar
  15. E. P. Salathe and K. N. An, “A mathematical analysis of fluid movement across capillary walls,” Microvascular Research, vol. 11, no. 1, pp. 1–23, 1976. View at Google Scholar
  16. R. K. Jain and L. T. Baxter, “Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure,” Cancer Research, vol. 48, no. 24 I, pp. 7022–7032, 1988. View at Google Scholar · View at Scopus
  17. L. T. Baxter and R. K. Jain, “Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection,” Microvascular Research, vol. 37, no. 1, pp. 77–104, 1989. View at Google Scholar
  18. F. R. Curry, “Permeability measurements in an individually perfused capillary: the "squid axon" of the microcirculation,” Experimental Physiology, vol. 93, no. 4, pp. 444–446, 2008. View at Publisher · View at Google Scholar
  19. A. Eladdadi and D. Isaacson, “A mathematical model for the effects of HER2 overexpression on cell proliferation in breast cancer,” Bulletin of Mathematical Biology, vol. 70, no. 6, pp. 1707–1729, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Zhu, X. Zhou, M. T. Lewis, L. Xia, and S. Wong, “Cancer stem cell, niche and EGFR decide tumor development and treatment response: a bio-computational simulation study,” Journal of Theoretical Biology, vol. 269, no. 1, pp. 138–149, 2011. View at Publisher · View at Google Scholar
  21. Z. Miao, G. Ren, H. Liu et al., “An engineered knottin peptide labeled with 18F for PET imaging of integrin expression,” Bioconjugate Chemistry, vol. 20, no. 12, pp. 2342–2347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. A. Vasey, M. Gore, R. Wilson et al., “A phase Ib trial of docetaxel, carboplatin and erlotinib in ovarian, fallopian tube and primary peritoneal cancers,” British Journal of Cancer, vol. 98, no. 11, pp. 1774–1780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Milosevic, A. Fyles, D. Hedley et al., “Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements,” Cancer Research, vol. 61, no. 17, pp. 6400–6405, 2001. View at Google Scholar · View at Scopus
  24. H. W. Lo, S. C. Hsu, and M. C. Hung, “EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization,” Breast Cancer Research and Treatment, vol. 95, no. 3, pp. 211–218, 2006. View at Publisher · View at Google Scholar
  25. S. Pennock and Z. Wang, “Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling,” Molecular and Cellular Biology, vol. 23, no. 16, pp. 5803–5815, 2003. View at Publisher · View at Google Scholar · View at Scopus