Table of Contents
ISRN Chemical Engineering
Volume 2012, Article ID 818953, 7 pages
http://dx.doi.org/10.5402/2012/818953
Research Article

Selectivity of the Formation of the Ring-Closed Products and Methylcyclohexenes in the Dehydrogenation of Methylcyclohexane to Toluene

1School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M60 1QD, UK
2Institute of Chemical Engineering and Technology, University of the Punjab, New Campus, Lahore 54590, Pakistan

Received 4 May 2012; Accepted 28 May 2012

Academic Editors: M. Assael and S. Wang

Copyright © 2012 Muhammad R. Usman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Jothimurugesan, S. Bhatla, and R. D. Srivastava, “Kinetics of dehydrogenation of methylcyclohexane over a platinum-rhenium-alumina catalyst in the presence of added hydrogen,” Industrial & Engineering Chemistry Fundamentals, vol. 24, no. 4, pp. 433–438, 1985. View at Google Scholar · View at Scopus
  2. F. S. Alhumaidan, Hydrogen storage in liquid organic hydrides: producing hydrogen catalytically from methylcyclohexane [Ph.D. thesis], The University of Manchester, Manchester, UK, 2008.
  3. M. R. Usman, “Catalytic dehydrogenation of methylcyclohexane over monometallic catalysts for on-board hydrogen storage, production, and utilization,” Energy Sources A, vol. 33, pp. 2231–2238, 2011. View at Google Scholar
  4. M. R. Usman, D. L. Cresswell, and A. A. Garforth, “By-products formation in the dehydrogenation of methylcyclohexane,” Petroleum Science and Technology, vol. 29, no. 21, pp. 2247–2257, 2011. View at Publisher · View at Google Scholar
  5. M. Usman, D. Cresswell, and A. Garforth, “Detailed reaction kinetics for the dehydrogenation of methylcyclohexane over Pt catalyst,” Industrial & Engineering Chemistry Research, vol. 51, pp. 158–170, 2012. View at Google Scholar
  6. D. E. Tsakiris, Catalytic production of hydrogen from liquid organic hydride [Ph.D. thesis], The University of Manchester, Manchester, UK, 2007.
  7. J. H. Sinfelt and J. C. Rohrer, “Kinetics of the catalytic isomerization-dehydroisomerization of methylcyclopentane,” Journal of Physical Chemistry, vol. 65, no. 6, pp. 978–981, 1961. View at Google Scholar · View at Scopus
  8. V. Haensel, G. R. Donaldson, and F. J. Riedl, “Mechanisms of cyclohexane conversion over platinum-alumina catalysts,” in Proceedings of the 3rd International Conference Catalysis, vol. 1, pp. 294–307, 1965.
  9. C. G. Myers, W. H. Lang, and P. B. Weisz, “Aging of platinum reforming catalysts,” Industrial & Engineering Chemistry Research, vol. 53, pp. 299–302, 1961. View at Google Scholar
  10. M. Al-Sabawi and H. de Lasa, “Kinetic modeling of catalytic conversion of methylcyclohexane over USY zeolites: adsorption and reaction phenomena,” AIChE Journal, vol. 55, no. 6, pp. 1538–1558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. H. Sinfelt, H. Hurwitz, and R. A. Shulman, “Kinetics of methylcyclohexane dehydrogenation over PT-Al2O3,” Journal of Physical Chemistry, vol. 64, no. 10, pp. 1559–1562, 1960. View at Google Scholar · View at Scopus
  12. P. A. Van Trimpont, G. B. Marin, and G. F. Froment, “Kinetics of methylcyclohexane dehydrogenation on sulfided commercial platinum/alumina and platinum-rhenium/alumina catalysts,” Industrial and Engineering Chemistry Fundamentals, vol. 25, no. 4, pp. 544–553, 1986. View at Google Scholar · View at Scopus