Table of Contents
ISRN Corrosion
Volume 2012, Article ID 842836, 9 pages
http://dx.doi.org/10.5402/2012/842836
Research Article

3-Formylindole-4-aminobenzoic Acid: A Potential Corrosion Inhibitor for Mild Steel and Copper in Hydrochloric Acid Media

Research Division, Department of Chemistry, St. Thomas' College, University of Calicut, Thrissur 680001, India

Received 19 September 2012; Accepted 2 October 2012

Academic Editors: C. Gu, A. Hermann, C.-H. Hsu, G. Marginean, and C. Valentini

Copyright © 2012 Aby Paul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Bentiss, M. Traisnel, L. Gengembre, and M. Lagrenée, “Inhibition of acidic corrosion of mild steel by 3,5-diphenyl-4H-1,2,4-triazole,” Applied Surface Science, vol. 161, no. 1, pp. 194–202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Raman and P. labine, Reviews on Corrosion Inhibitor Science and Technology, vol. 1, NACE, Houston, Tex, USA, 1986.
  3. E. E. Oguzie, “Corrosion inhibition of mild steel in hydrochloric acid solution by methylene blue dye,” Materials Letters, vol. 59, no. 8-9, pp. 1076–1079, 2005. View at Publisher · View at Google Scholar
  4. A. Yurt and Ö. Aykın, “Diphenolic Schiff bases as corrosion inhibitors for aluminium in 0.1 M HCl: potentiodynamic polarisation and EQCM investigations,” Corrosion Science, vol. 53, no. 11, pp. 3725–3732, 2011. View at Publisher · View at Google Scholar
  5. A. K. Singh, S. K. Shukla, M. Singh, and M. A. Quraishi, “Inhibitive effect of ceftazidime on corrosion of mild steel in hydrochloric acid solution,” Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 68–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Behpour, S. M. Ghoreishi, N. Soltani, M. Salavati-Niasari, M. Hamadanian, and A. Gandomi, “Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution,” Corrosion Science, vol. 50, no. 8, pp. 2172–2181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. S. Jacob and G. Parameswaran, “Corrosion inhibition of mild steel in hydrochloric acid solution by Schiff base furoin thiosemicarbazone,” Corrosion Science, vol. 52, no. 1, pp. 224–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Deng, X. Li, and H. Fu, “Alizarin violet 3B as a novel corrosion inhibitor for steel in HCl, H2SO4 solutions,” Corrosion Science, vol. 53, no. 11, pp. 3596–3602, 2011. View at Publisher · View at Google Scholar
  9. X. Li, S. Deng, and H. Fu, “Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in sulfuric acid solution,” Materials Chemistry and Physics, vol. 129, no. 3, pp. 696–700, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Bansiwal, P. Anthony, and S. P. Mathur, “Inhibitive effect of some Schiff bases on corrosion of aluminium in hydrochloric acid solutions,” British Corrosion Journal, vol. 35, no. 4, pp. 301–303, 2000. View at Google Scholar · View at Scopus
  11. S. Li, S. Chen, S. Lei, H. Ma, R. Yu, and D. Liu, “Investigation on some Schiff bases as HCl corrosion inhibitors for copper,” Corrosion Science, vol. 41, no. 7, pp. 1273–1287, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. ASTM, “Standard recommended practice for the laboratory immersion corrosion testing of metals,” Tech. Rep. AST G-31-72, ASTM, Philadelphia, Pa, USA, 1990. View at Google Scholar
  13. H. Ashassi-Sorkhabi, B. Shaabani, and D. Seifzadeh, “Effect of some pyrimidinic Shciff bases on the corrosion of mild steel in hydrochloric acid solution,” Electrochimica Acta, vol. 50, no. 16-17, pp. 3446–3452, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. I. B. Obot and N. O. Obi-Egbedi, “Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: experimental and theoretical investigation,” Corrosion Science, vol. 52, no. 1, pp. 198–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Quraishi, D. Jamal, and M. Luqman, “Corrosion behaviour of VTS, STS and DTS inhibitors in formic and acetic acids,” Indian Journal of Chemical Technology, vol. 9, no. 6, pp. 479–483, 2002. View at Google Scholar · View at Scopus
  16. K. C. Emregül and O. Atakol, “Corrosion inhibition of iron in 1 M HCl solution with Schiff base compounds and derivatives,” Materials Chemistry and Physics, vol. 83, no. 2-3, pp. 373–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Li, S. Deng, H. Fu, and T. Li, “Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl,” Electrochimica Acta, vol. 54, no. 16, pp. 4089–4098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Cano, J. L. Polo, A. L. A. Iglesia, and J. M. Bastidas, “A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm,” Adsorption, vol. 10, no. 3, pp. 219–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Bentiss, M. Lebrini, and M. Lagrenée, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/ hydrochloric acid system,” Corrosion Science, vol. 47, no. 12, pp. 2915–2931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. W. H. Li, Q. He, S. T. Zhang, C. L. Pei, and B. R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. H. H. Hassan, E. Abdelghani, and M. A. Amin, “Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives. Part I. Polarization and EIS studies,” Electrochimica Acta, vol. 52, no. 22, pp. 6359–6366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. S. Abdel-Aal and M. S. Morad, “Inhibiting effects of some quinolines and organic phosphonium compounds on corrosion of mild steel in 3M HCl solution and their adsorption characteristics,” British Corrosion Journal, vol. 36, no. 4, pp. 253–260, 2001. View at Google Scholar · View at Scopus
  23. P. Bommersbach, C. Alemany-Dumont, J. P. Millet, and B. Normand, “Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods,” Electrochimica Acta, vol. 51, no. 6, pp. 1076–1084, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Mansfeld, “Recording and analysis of AC impedance data for corrosion studies,” Corrosion, vol. 36, no. 5, pp. 301–307, 1981. View at Publisher · View at Google Scholar
  25. I. L. Rosenfield, Corrosion Inhibitors, McGraw-Hill, New York, NY, USA, 1981.
  26. A. S. Priya, V. S. Muralidharam, and A. Subramannia, “Development of novel acidizing inhibitors for carbon steel corrosion in 15% boiling hydrochloric acid,” Corrosion, vol. 64, no. 6, pp. 541–552, 2008. View at Publisher · View at Google Scholar
  27. M. El Azhar, B. Mernari, M. Traisnel, F. Bentiss, and M. Lagrenée, “Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in acidic media,” Corrosion Science, vol. 43, no. 12, pp. 2229–2238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Yurt, A. Balaban, S. U. Kandemir, G. Bereket, and B. Erk, “Investigation on some Schiff bases as HCl corrosion inhibitors for carbon steel,” Materials Chemistry and Physics, vol. 85, no. 2-3, pp. 420–426, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. R. Macdonald, W. B. Johnson, and J. R. Macdonald, Theory in Impedance Spectroscopy, John Wiley & Sons, New York, NY, USA, 1987.
  30. M. MaCafferty and N. Hackerman, “Double layer capacitance of iron and corrosion inhibition with polymethylene diamines,” Journal of the Electrochemical Society, vol. 119, no. 2, pp. 146–154, 1972. View at Publisher · View at Google Scholar
  31. X. Li, S. Deng, and H. Fu, “Synergism between red tetrazolium and uracil on the corrosion of cold rolled steel in H2SO4 solution,” Corrosion Science, vol. 51, no. 6, pp. 1344–1355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. E. S. Ferreira, C. Giacomelli, F. C. Giacomelli, and A. Spinelli, “Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel,” Materials Chemistry and Physics, vol. 83, no. 1, pp. 129–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. Qu, Z. Hao, S. Jiang, L. Li, and W. Bai, “Synergistic inhibition between dodecylamine and potassium iodide on the corrosion of cold rolled steel in 0.1 M phosphoric acid,” Materials and Corrosion, vol. 59, no. 11, pp. 883–888, 2008. View at Publisher · View at Google Scholar
  34. F. Bentiss, M. Traisnel, and M. Lagrenee, “The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media,” Corrosion Science, vol. 42, no. 1, pp. 127–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. D. P. Schweinsberg, G. A. George, A. K. Nanayakkara, and D. A. Steinert, “The protective action of epoxy resins and curing agents-inhibitive effects on the aqueous acid corrosion of iron and steel,” Corrosion Science, vol. 28, no. 1, pp. 33–42, 1988. View at Google Scholar · View at Scopus
  36. H. Shokry, M. Yuasa, I. Sekine, R. M. Issa, H. Y. El-Baradie, and G. K. Gomma, “Corrosion inhibition of mild steel by Schiff base compounds in various aqueous solutions: part 1,” Corrosion Science, vol. 40, no. 12, pp. 2173–2186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. A. K. Singh and M. A. Quraishi, “Inhibiting effects of 5-substituted isatin-based Mannich bases on the corrosion of mild steel in hydrochloric acid solution,” Journal of Applied Electrochemistry, vol. 40, no. 7, pp. 1293–1306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Milić and M. M. Antonijević, “Some aspects of copper corrosion in presence of benzotriazole and chloride ions,” Corrosion Science, vol. 51, no. 1, pp. 28–34, 2009. View at Publisher · View at Google Scholar