Table of Contents
ISRN Analytical Chemistry
Volume 2012 (2012), Article ID 847102, 8 pages
http://dx.doi.org/10.5402/2012/847102
Research Article

Use of Electron Paramagnetic Resonance Spectroscopy to Study Dielectric Properties of Liquids

Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK 73019, USA

Received 29 December 2011; Accepted 2 February 2012

Academic Editors: D. Heimler and V. Stefov

Copyright © 2012 Daniel T. Glatzhofer and Rahul S. Kadam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Brown, D. Hess, V. Desai, and M. J. Deen, “Dielectric science and technology,” Electrochemical Society Interface, vol. 15, no. 1, pp. 28–31, 2006. View at Google Scholar · View at Scopus
  2. R. N. Mason, R. Frech, L. Hu, and D. T. Glatzhofer, “Infrared spectroscopic and conductivity studies of poly(N-methylpropylenimine)/lithium triflate electrolytes,” Solid State Ionics, vol. 180, no. 40, pp. 1626–1632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. G. Snow, R. A. Sanders, R. Frech, and D. T. Glatzhofer, “Synthesis and spectroscopic studies of linear poly(N-(2-(2-methoxyethoxy)ethyl)ethylenimine), a PEI/PEO hybrid, and its interactions with lithium triflate,” Electrochimica Acta, vol. 48, no. 14–16, pp. 2065–2069, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. York, R. Frech, A. Snow, and D. Glatzhofer, “A comparative vibrational spectroscopic study of lithium triflate and sodium triflate in linear poly(ethylenimine),” Electrochimica Acta, vol. 46, no. 10-11, pp. 1533–1537, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. G. Sutter, B. K. P. Scaife, J. B. Hasted et al., Dielectric and Related Molecular Processes, vol. 1, Edited by M. Davies, The Chemical Society, London, UK, 1972.
  6. H. R. Garner, A. C. Lewis, and T. Ohkawa, “Measurement of the microwave absorption for small samples in a coaxial line,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 5, pp. 890–892, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. S.-H. Chao, “Measurements of microwave conductivity and dielectric constant by the cavity perturbation method and their errors,” IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 6, pp. 519–526, 1985. View at Google Scholar · View at Scopus
  8. G. Åkerlöf and O. A. Short, “The dielectric constant of dioxane—water mixtures between 0 and 80°,” Journal of the American Chemical Society, vol. 58, no. 7, pp. 1241–1243, 1936. View at Google Scholar · View at Scopus
  9. C. P. Pool Jr., Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques, Wiley & Sons, New York, NY, USA, 1967.
  10. N. D. Yordanov and S. Lubenova, “Effect of dielectric constants, sample container dimensions and frequency of magnetic field modulation on the quantitative EPR response,” Analytica Chimica Acta, vol. 403, no. 1-2, pp. 305–313, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. N. D. Yordanov, B. Mladenova, and P. Petkov, “Studies on the uncertainties in quantitative EPR estimations due to the construction of the cavities used,” Analytica Chimica Acta, vol. 453, no. 1, pp. 155–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. N. D. Yordanov and P. Slavov, “Influence of the diameter and wall thickness of a quartz pipe inserted in the EPR cavity on the signal intensity,” Applied Magnetic Resonance, vol. 10, no. 1–3, pp. 351–356, 1996. View at Google Scholar · View at Scopus
  13. C. Wohlfarth, Pure Liquids: Data. Landolt-Bornstain.Group IV physical Chemistry. Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures, vol. 6, Springer, New York, NY, USA, 1991.
  14. J. Bastiaens, P. Huyskens, and M. Van Beylen, “Specific solvent effectsof dioxane and N, N, N', N'-tetramethylethylenediamine in the anionic polymerization of styrene with Li+ as counterion,” Macromolecular Symposia, vol. 132, pp. 165–185, 1998. View at Google Scholar
  15. J. B. Hasted, G. H. Haggis, and P. Hutton, “The dielectric dispersion of dioxan-water mixtures,” Transactions of the Faraday Society, vol. 47, pp. 577–580, 1951. View at Publisher · View at Google Scholar · View at Scopus
  16. B. L. Kormos and C. J. Cramer, “Solvation effects on alternative nucleophilic substitution reaction paths for chloride/allyl chloride and γ-methylated congeners,” Journal of Organic Chemistry, vol. 68, no. 16, pp. 6375–6386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Ito, H. Yokoyama, T. Sato, and T. Ogata, “Influence of the lens effect in a sample with large dielectric constant in a loop-gap resonator on the EPR signal intensity at 700 MHz,” Applied Magnetic Resonance, vol. 21, no. 1, pp. 97–103, 2001. View at Google Scholar · View at Scopus