Table of Contents
ISRN Neurology
Volume 2012 (2012), Article ID 851541, 27 pages
http://dx.doi.org/10.5402/2012/851541
Research Article

Interplaying Factors That Effect Multiple Sclerosis Causation and Sustenance

Enteron, Inc., 7030 Lattimore Drive, Dallas, TX 75252, USA

Received 1 November 2011; Accepted 11 December 2011

Academic Editor: B. Moreno-López

Copyright © 2012 Emanuel Calenoff. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Göpel, H. Benkenstein, and M. Banzhaf, “Immunosuppressive therapy of multiple sclerosis using cyclophosphamide and imuran. Report on 57 cases,” Deutsche Gesundheitswesen, vol. 27, no. 41, pp. 1955–1961, 1972. View at Google Scholar · View at Scopus
  2. L. Jacobs, J. O'Malley, A. Freeman, and R. Ekes, “Intrathecal interferon reduces exacerbations of multiple sclerosis,” Science, vol. 214, no. 4524, pp. 1026–1028, 1981. View at Google Scholar · View at Scopus
  3. J. R. Berger, “Functional improvement and symptom management in multiple sclerosis: clinical efficacy of current therapies,” American Journal of Managed Care, vol. 17, supplement 5, pp. S146–S153, 2011. View at Google Scholar
  4. D. D. Mikol, C. Ditlow, D. Usatin et al., “Serum IgE reactive against small myelin protein-derived peptides is increased in multiple sclerosis patients,” Journal of Neuroimmunology, vol. 180, no. 1-2, pp. 40–49, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. V. H. Secor, W. E. Secor, M. A. Brown, and C. A. Gutekunst, “Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis,” Journal of Experimental Medicine, vol. 191, no. 5, pp. 813–821, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Brown, M. B. Tanzola, and M. Robbie-Ryan, “Mechanisms underlying mast cell influence on EAE disease course,” Molecular Immunology, vol. 38, no. 16–18, pp. 1373–1378, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Medic, P. Lorenzon, F. Vita et al., “Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes,” Journal of Neuroimmunology, vol. 218, no. 1-2, pp. 57–66, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. Z. M. Ibrahim, “The mast cells of the mammalian central nervous system: part 2. The effect of proton irradiation in the monkey,” Journal of the Neurological Sciences, vol. 21, no. 4, pp. 479–499, 1974. View at Publisher · View at Google Scholar · View at Scopus
  9. G. N. Dietsch and D. J. Hinrichs, “Mast cell proteases liberate stable encephalitogenic fragments from intact myelin,” Cellular Immunology, vol. 135, no. 2, pp. 541–548, 1991. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Johnson, P. A. Seeldrayers, and H. L. Weiner, “The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation,” Brain Research, vol. 444, no. 1, pp. 195–198, 1988. View at Google Scholar · View at Scopus
  11. M. Z. Ibrahim, A. T. Reder, R. Lawand, W. Takash, and S. Sallouh-Khatib, “The mast cells of the multiple sclerosis brain,” Journal of Neuroimmunology, vol. 70, no. 2, pp. 131–138, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Paar, N. T. Harris, D. Holowka, and B. Baird, “Bivalent ligands with rigid double-stranded DNA spacers reveal structural constraints on signaling by FcεRI,” Journal of Immunology, vol. 169, no. 2, pp. 856–864, 2002. View at Google Scholar · View at Scopus
  13. J. Newcombe, S. Gahan, and M. L. Cuzner, “Serum antibodies against central nervous system proteins in human demyelinating disease,” Clinical and Experimental Immunology, vol. 59, no. 2, pp. 383–390, 1985. View at Google Scholar · View at Scopus
  14. H. Hashizume, B. K. G. Theng, and A. Yamagishi, “Adsorption and discrimination of alanine and alanyl-alanine enantiomers by allophane,” Clay Minerals, vol. 37, no. 3, pp. 551–557, 2002. View at Publisher · View at Google Scholar
  15. T. P. Hopp and K. R. Woods, “Prediction of protein antigenic determinants from amino acid sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 6 I, pp. 3824–3828, 1981. View at Google Scholar
  16. K. E. Kronquist, B. F. Crandall, W. B. Macklin, and A. T. Campagnoni, “Expression of myelin proteins in the developing human spinal cord: cloning and sequencing of human proteolipid protein cDNA,” Journal of Neuroscience Research, vol. 18, no. 3, pp. 395–401, 1987. View at Google Scholar
  17. Sanger 1. Myelin Oligodendrocyte Glycoprotein Isoform CAQ08210 Amino Acid Sequence, Wellcome Trust Sanger Institute, Hinxton, UK, 2009.
  18. MBP Isoform 1, E. H. Eylar, S. Brostoff, G. Hashim, J. Caccam, and P. Burnett, “Basic A1 protein of the myelin membrane. The complete amino acid sequence,” Journal of Biological Chemistry, vol. 246, no. 18, pp. 5770–5784, 1971. View at Google Scholar
  19. MBP Isoform 2 and E. H. Eylar, a s per MBP Isoform 1 minus amino acids 193–304.
  20. MBP Isoform 3 and E. H. Eylar, as per MBP Isoform 1 minus amino acids 1–133 and amino acid 192 is substituted by KVPWLKPGRSPLPSHARSQPGLCNMYK.
  21. D. D. Mikol, J. R. Gulcher, and K. Stefansson, “The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the HNK-1 carbohydrate,” Journal of Cell Biology, vol. 110, no. 2, pp. 471–479, 1990. View at Google Scholar
  22. J. M. Bronstein, S. Tiwari-Woodruff, A. G. Buznikov, and D. B. Stevens, “Involvement of OSP/claudin-11 in oligodendrocyte membrane interactions: role in biology and disease,” Journal of Neuroscience Research, vol. 59, no. 6, pp. 706–711, 2000. View at Publisher · View at Google Scholar
  23. C. Wahl, S. Liptay, G. Adler, and R. M. Schmid, “Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B,” Journal of Clinical Investigation, vol. 101, no. 5, pp. 1163–1174, 1998. View at Google Scholar
  24. A. H. Badawy, S. A. Shalaby, and S. F. Abdel Aal, “Hydantoin immunosuppression clinical study,” Journal of the Egyptian Society of Parasitology, vol. 21, no. 1, pp. 257–262, 1991. View at Google Scholar
  25. M. Yamada, M. Ohkawa, K. Tamura et al., “Anticonvulsant-induced suppression of IFN-γ production by lymphocytes obtained from cervical lymph nodes in glioma-bearing mice,” Journal of Neuro-Oncology, vol. 47, no. 2, pp. 125–132, 2000. View at Publisher · View at Google Scholar
  26. H. Sugino, T. Futamura, Y. Mitsumoto, K. Maeda, and Y. Marunaka, “Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, pp. 303–307, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. M. P. Chang, S. C. Castle, and D. C. Norman, “Suppressive effects of alprazolam on the immune response of mice,” International Journal of Immunopharmacology, vol. 13, no. 2-3, pp. 259–266, 1991. View at Google Scholar
  28. T. C. Sorrell and I. J. Forbes, “Depression of immune competence by phenytoin and carbamazepine. Studies in vivo and in vitro,” Clinical and Experimental Immunology, vol. 20, no. 2, pp. 273–285, 1975. View at Google Scholar
  29. A. D'Ambrosio, G. Segoloni, and F. Quintieri, “The modulatory effect of diltiazem on human in vitro alloreactivity when used alone or in combination with cyclosporin A and/or methylprednisolone,” Transplant International, vol. 10, no. 6, pp. 426–431, 1997. View at Publisher · View at Google Scholar
  30. S. P. Wey, H. Y. Wu, F. C. Chang, and T. R. Jan, “Methamphetamine and diazepam suppress antigen-specific cytokine expression and antibody production in ovalbumin-sensitized BALB/c mice,” Toxicology Letters, vol. 181, no. 3, pp. 157–162, 2008. View at Publisher · View at Google Scholar · View at PubMed
  31. F. Paul, S. Waiczies, J. Wuerfel et al., “Oral high-dose atorvastatin treatment in relapsing-remitting multiple sclerosis,” Plos One, vol. 3, no. 4, Article ID e1928, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. C. Delayre-Orthez, J. Becker, J. Auwerx, N. Frossard, and F. Pons, “Suppression of allergen-induced airway inflammation and immune response by the peroxisome proliferator-activated receptor-alpha agonist fenofibrate,” European Journal of Pharmacology, vol. 581, no. 1-2, pp. 177–184, 2008. View at Publisher · View at Google Scholar · View at PubMed
  33. J. A. Kobashigawa, H. Laks, D. C. Drinkwater et al., “The University of California at Los Angeles experience in heart transplantation,” Clinical Transplants, pp. 129–135, 1995. View at Google Scholar
  34. W. M. Schmidt, A. O. Spiel, B. Jilma, M. Wolzt, and M. Müller, “In-vivo effects of simvastatin and rosuvastatin on global gene expression in peripheral blood leucocytes in a human inflammation model,” Pharmacogenetics and Genomics, vol. 18, no. 2, pp. 109–120, 2008. View at Publisher · View at Google Scholar · View at PubMed
  35. Y. C. Kim, K. K. Kim, and E. M. Shevach, “Simvastatin induces Fox p3+ T-regulatory cells by modulation of transforming growth factor-β signal transduction,” Immunology, vol. 130, no. 4, pp. 484–493, 2010. View at Publisher · View at Google Scholar · View at PubMed
  36. L. Devoino, G. Idova, E. Alperina, and M. Cheido, “Brain neuromediator systems in the immune response control: pharmacological analysis of pre- and postsynaptic mechanisms,” Brain Research, vol. 633, no. 1-2, pp. 267–274, 1994. View at Publisher · View at Google Scholar
  37. P. Vollmar, S. Nessler, S. R. Kalluri, H. P. Hartung, and B. Hemmer, “The antidepressant venlafaxine ameliorates murine experimental autoimmune encephalomyelitis by suppression of pro-inflammatory cytokines,” International Journal of Neuropsychopharmacology, vol. 12, no. 4, pp. 525–536, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. M. Taler, M. Bar, I. Korob et al., “Evidence for an inhibitory immunomodulatory effect of selected antidepressants on rat splenocytes: possible relevance to depression and hyperactive-immune disorders,” International Immunopharmacology, vol. 8, no. 4, pp. 526–533, 2008. View at Publisher · View at Google Scholar · View at PubMed
  39. R. Pacifici, S. Pichini et al., “Evidence for an inhibitory immunomodulatory effect of selected antidepressants on rat splenocytes: possible relevance to depression and hyperactive-immune disorders,” Journal of Pharmacology and Experimental Therapeutics, vol. 309, pp. 285–292, 2004. View at Google Scholar
  40. T. C. Pellegrino and B. M. Bayer, “Role of central 5 -HT (2) receptors in fluoxetine-Induced decreases in T lymphocyte activity,” Brain, Behavior, and Immunity, vol. 16, pp. 87–103, 2002. View at Google Scholar
  41. M. Maes, E. Bosnians, J. Calabrese, R. Smith, and H. Y. Meltzer, “Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers,” Journal of Psychiatric Research, vol. 29, no. 2, pp. 141–152, 1995. View at Publisher · View at Google Scholar
  42. M. Maes, A. Lin et al., “Negative immunoregulatory effects of noradrenalin through alpha2 -adrenoceptor activation,” Neuroendocrinology Letters, vol. 21, pp. 375–382, 2000. View at Google Scholar
  43. M. R. Mardiney Jr. and A. B. Bredt, “The immunosuppressive effect of amantadine upon the response of lymphocytes to specific antigens in vitro,” Transplantation, vol. 12, no. 3, pp. 183–188, 1971. View at Google Scholar
  44. M. Kubera, A. Basta-Kaim, A. Skowron-Cendrzak, B. Mazur-Kolecka, A. Roman, and J. Borycz, “Effect of repeated amitriptyline administration to mice on the T lymphocyte proliferative activity and natural killer cell cytotoxicity,” Polish Journal of Pharmacology, vol. 47, no. 4, pp. 321–326, 1995. View at Google Scholar
  45. Y. Yoshiyama, “Neurodegeneration and inflammation: analysis of a FTDP-17 model mouse,” Clinical Neurology, vol. 48, no. 11, pp. 910–912, 2008. View at Google Scholar
  46. J. Ashton-Chess, G. Meurette, G. Karam et al., “The study of mitoxantrone as a potential immunosuppressor in transgenic pig renal xenotransplantation in baboons: comparison with cyclophosphamide,” Xenotransplantation, vol. 11, no. 2, pp. 112–122, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. C. Yao, J. Zhang, L. Wang, Y. Guo, and Z. Tian, “Inhibitory effects of thyroxine on cytokine production by T cells in mice,” International Immunopharmacology, vol. 7, no. 13, pp. 1747–1754, 2007. View at Publisher · View at Google Scholar · View at PubMed
  48. M. Kurohara, H. Yasuda, H. Moriyama et al., “Low-dose warfarin functions as an immunomodulator to prevent cyclophosphamide-induced NOD diabetes,” Kobe Journal of Medical Sciences, vol. 54, no. 1, pp. E1–E13, 2008. View at Google Scholar
  49. P. T. Thomas, R. V. House, and H. N. Bhargava, “Direct cellular immunomodulation produced by diacetylmorphine (heroin) or methadone,” General Pharmacology, vol. 26, no. 1, pp. 123–130, 1995. View at Publisher · View at Google Scholar
  50. R. Vallejo, O. de Leon-Casasola, and R. Benyamin, “Opioid therapy and immunosuppression: a review,” American Journal of Therapeutics, vol. 11, no. 5, pp. 354–365, 2004. View at Google Scholar
  51. L. Manchikanti, K. N. Manchikanti, V. Pampati, and K. A. Cash, “Prevalence of side effects of prolonged low or moderate dose opioid therapy with concomitant benzodiazepine and/or antidepressant therapy in chronic non-cancer pain,” Pain Physician, vol. 12, no. 1, pp. 259–267, 2009. View at Google Scholar
  52. A. H. Cross and E. Waubant, “MS and the B cell controversy,” Biochimica et Biophysica Acta, vol. 1812, no. 2, pp. 231–238, 2011. View at Publisher · View at Google Scholar · View at PubMed
  53. L. Kappos, D. Li, P. A. Calabresi et al., “Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial,” The Lancet, vol. 378, no. 9805, pp. 1779–1787, 2011. View at Publisher · View at Google Scholar
  54. C. Holmén, F. Piehl, J. Hillert et al., “A Swedish national post-marketing surveillance study of natalizumab treatment in multiple sclerosis,” Multiple Sclerosis, vol. 17, no. 6, pp. 708–719, 2011. View at Publisher · View at Google Scholar · View at PubMed
  55. T. W. Leonard, J. Lynch, M. J. McKenna, and D. J. Brayden, “Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET,” Expert Opinion on Drug Delivery, vol. 3, no. 5, pp. 685–692, 2006. View at Publisher · View at Google Scholar · View at PubMed
  56. A. Polnok, J. C. Verhoef, G. Borchard, N. Sarisuta, and H. E. Junginger, “In vitro evaluation of intestinal absorption of desmopressin using drug-delivery systems based on superporous hydrogels,” International Journal of Pharmaceutics, vol. 269, no. 2, pp. 303–310, 2004. View at Publisher · View at Google Scholar
  57. S. M. van der Merwe, J. C. Verhoef, J. H. M. Verheijden, A. F. Kotzé, and H. E. Junginger, “Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 58, no. 2, pp. 225–235, 2004. View at Publisher · View at Google Scholar · View at PubMed