Table of Contents
ISRN Psychiatry
Volume 2012, Article ID 852949, 5 pages
http://dx.doi.org/10.5402/2012/852949
Clinical Study

Monoamine Oxidase A and B Gene Polymorphisms and Negative and Positive Symptoms in Schizophrenia

1Posgrado de Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, 03100 México, DF, Mexico
2Departmento de Genética Psiquiátrica, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 México, DF, Mexico
3Subdirección Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 México, DF, Mexico
4Clínica de Genética Psiquiátrica, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 México, DF, Mexico
5División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, 86040 Comalcalco, Tabasco, Mexico
6Servicios de Atención Psiquiátrica, Secretaría de Salud y Grupo Médico Carracci, Carracci 107, 03740 México, DF, Mexico

Received 7 February 2012; Accepted 27 February 2012

Academic Editors: J. Chou, C. U. Lee, and C. Toni

Copyright © 2012 Beatriz Camarena et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Fanous and K. S. Kendler, “Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework,” Molecular Psychiatry, vol. 10, no. 1, pp. 6–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. O. D. Howes and S. Kapur, “The dopamine hypothesis of schizophrenia: version III—The final common pathway,” Schizophrenia Bulletin, vol. 35, no. 3, pp. 549–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Arajarvi, T. Varilo, J. Haukka et al., “Affective flattening and alogia associate with the familial form of schizophrenia,” Psychiatry Research, vol. 141, no. 2, pp. 161–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. G. Cardno, K. Thomas, and P. McGuffin, “Clinical variables and genetic loading for schizophrenia: analysis of published Danish adoption study data,” Schizophrenia Bulletin, vol. 28, no. 3, pp. 393–399, 2002. View at Google Scholar · View at Scopus
  5. H. Wickham, C. Walsh, P. Asherson et al., “Familiality of symptom dimensions in schizophrenia,” Schizophrenia Research, vol. 47, no. 2-3, pp. 223–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Dann, L. E. DeLisi, M. Devoto et al., “A linkage study of schizophrenia to markers within Xp11 near the MAOB gene,” Psychiatry Research, vol. 70, no. 3, pp. 131–143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. L. E. DeLisi and T. J. Crow, “Evidence for a sex chromosome locus for schizophrenia,” Schizophrenia Bulletin, vol. 15, no. 3, pp. 431–440, 1989. View at Google Scholar · View at Scopus
  8. J. Wei and G. P. Hemmings, “A study of linkage disequilibrium between polymorphic loci for monamine oxidases A and B in schizophrenia,” Psychiatric Genetics, vol. 9, no. 4, pp. 177–181, 1999. View at Google Scholar · View at Scopus
  9. M. Y. M. Ng, D. F. Levinson, S. V. Faraone, B. K. Suarez et al., “Meta-analysis of 32 genome-wide linkage studies of schizophrenia,” Molecular Psychiatry, vol. 14, no. 8, pp. 774–785, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Grimsby, K. Chen, L. J. Wang, N. C. Lan, and J. C. Shih, “Human monoamine oxidase A and B genes exhibit identical exon-intron organization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3637–3641, 1991. View at Google Scholar · View at Scopus
  11. S. Z. Sabol, S. Hu, and D. Hamer, “A functional polymorphism in the monoamine oxidase A gene promoter,” Human Genetics, vol. 103, no. 3, pp. 273–279, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Fresan, B. Camarena, R. Apiquian, A. Aguilar, N. Urraca, and H. Nicolini, “Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior,” Neuropsychobiology, vol. 55, no. 3-4, pp. 171–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Zammit, G. Jones, S. J. Jones et al., “Polymorphisms in the MAOA, MAOB, and COMT genes and aggressive behavior in schizophrenia,” American Journal of Medical Genetics - Neuropsychiatric Genetics, vol. 128, no. 1, pp. 19–20, 2004. View at Google Scholar · View at Scopus
  14. G. S. Hotamisligil and X. O. Breakefield, “Human monoamine oxidase A gene determines levels of enzyme activity,” American Journal of Human Genetics, vol. 49, no. 2, pp. 383–392, 1991. View at Google Scholar · View at Scopus
  15. D. Li and L. He, “Meta-study on association between the monoamine oxidase A gene (MAOA) and schizophrenia,” American Journal of Medical Genetics B, vol. 147, no. 2, pp. 174–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. T. Qiu, H. Q. Meng, C. Song et al., “Association between monoamine oxidase (MAO)-A gene variants and schizophrenia in a Chinese population,” Brain Research, vol. 1287, pp. 67–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Alvarez, S. Mas, P. Gassó et al., “Lack of association between schizophrenia and polymorphisms in dopamine metabolism and transport genes,” Fundamental and Clinical Pharmacology, vol. 24, no. 6, pp. 741–747, 2010. View at Publisher · View at Google Scholar
  18. W. H. Berrettini, W. H. Vogel, and R. Clouse, “Platelet monoamine oxidase in chronic schizophrenia,” American Journal of Psychiatry, vol. 134, no. 7, pp. 805–806, 1977. View at Google Scholar · View at Scopus
  19. A. Amiri, A. A. Noorbala, A. A. Nejatisafa et al., “Efficacy of selegiline add on therapy to risperidone in the treatment of the negative symptoms of schizophrenia: a double-blind randomized placebo-controlled study,” Human Psychopharmacology, vol. 23, no. 2, pp. 79–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Balciuniene, L. Emilsson, L. Oreland, U. Pettersson, and E. E. Jazin, “Investigation of the functional effect of monoamine oxidase polymorphisms in human brain,” Human Genetics, vol. 110, no. 1, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Carrera, J. Sanjuan, M. D. Molto et al., “Recent adaptive selection at MAOB and ancestral susceptibility to schizophrenia,” American Journal of Medical Genetics B, vol. 5, no. 150, pp. 369–374, 2009. View at Google Scholar
  22. S. E. Bergen, A. H. Fanous, D. Walsh, and K. S. Kendler, “Polymorphisms in SLC6A4, PAH, GABRB3, and MAOB and modification of psychotic disorder features,” Schizophrenia Research, vol. 109, no. 1–3, pp. 94–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Andreasen, The Scale for the Assessment of Negative Symptoms (SANS), University of Iowa, Iowa City, IA, USA, 1983.
  24. N. Andreasen, The Scale for the Assessment of Positive Symptoms (SAPS), University of Iowa, Iowa City, IA, USA, 1984.
  25. S. Wang, N. Ray, W. Rojas et al., “Geographic patterns of genome admixture in latin American mestizos,” PLoS Genetics, vol. 4, no. 3, Article ID e1000037, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Matsumoto, T. Shinkai, H. Hori, O. Ohmori, and J. Nakamura, “Polymorphisms of dopamine degradation enzyme (COMT and MAO) genes and tardive dyskinesia in patients with schizophrenia,” Psychiatry Research, vol. 127, no. 1-2, pp. 1–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Serretti, E. Lattuada, C. Lorenzi, R. Lilli, and E. Smeraldi, “Dopamine receptor D2 Ser/Cys 311 variant is associated with delusion and disorganization symptomatology in major psychoses,” Molecular Psychiatry, vol. 5, no. 3, pp. 270–274, 2000. View at Google Scholar · View at Scopus
  28. A. H. Fanous, M. C. Neale, R. E. Straub et al., “Clinical features of psychotic disorders and polymorphisms in HT2A, DRD2, DRD4, SLC6A3 (DAT1), and BDNF: a family based sssociation study,” American Journal of Medical Genetics - Neuropsychiatric Genetics, vol. 125, no. 1, pp. 69–78, 2004. View at Google Scholar · View at Scopus
  29. J. M. Pelayo-Terán, T. Pérez-Iglesias, J. Vázquez-Bourgon et al., “Catechol-O-methyltransferase Val158Met polymorphism and negative symptoms after acute antipsychotic treatment in first-episode non-affective psychosis,” Psychiatry Research, vol. 185, no. 1-2, pp. 286–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Roffman, A. P. Weiss, S. Purcell et al., “Contribution of methylenetetrahydrofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia,” Biological Psychiatry, vol. 63, no. 1, pp. 42–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. DeRosse, C. A. Hodgkinson, T. Lencz et al., “Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia,” Biological Psychiatry, vol. 61, no. 10, pp. 1208–1210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Hennah, T. Varilo, M. Kestila et al., “Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects,” Human Molecular Genetics, vol. 12, no. 23, pp. 3151–3159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. K. Malhotra, D. Goldman, C. Mazzanti, A. Clifton, A. Breier, and D. Pickar, “A functional serotonin transporter (5-HTT) polymorphism is associated with psychosis in neuroleptic-free schizophrenics,” Molecular Psychiatry, vol. 3, no. 4, pp. 328–332, 1998. View at Google Scholar · View at Scopus
  34. A. Serretti, R. Lilli, C. Lorenzi, E. Lattuada, and E. Smeraldi, “DRD4 exon 3 variants associated with delusional symptomatology in major psychoses: a study on 2,011 affected subjects,” American Journal of Medical Genetics - Neuropsychiatric Genetics, vol. 105, no. 3, pp. 283–290, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. J. B. Fan, M. S. Yang, J. X. Tang et al., “Family-based association study of the functional monoamine oxidase A gene promoter polymorphism and schizophrenia,” Schizophrenia Research, vol. 67, no. 1, pp. 107–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Norton, G. Kirov, S. Zammit et al., “Schizophrenia and functional polymorphisms in the MAOA and COMT genes: no evidence for association or epistasis,” American Journal of Medical Genetics - Neuropsychiatric Genetics, vol. 114, no. 5, pp. 491–496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. V. Syagailo, G. Stober, M. Grassle et al., “Association analysis of the functional monoamine oxidase a gene promoter polymorphism in psychiatric disorders,” American Journal of Medical Genetics - Neuropsychiatric Genetics, vol. 105, no. 2, pp. 168–171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. R. J. Lewine and H. Y. Meltzer, “Negative symptoms and platelet monoamine oxidase activity in male schizophrenic patients,” Psychiatry Research, vol. 12, no. 2, pp. 99–109, 1984. View at Publisher · View at Google Scholar · View at Scopus
  39. C. J. Fowler, A. Carlsson, and B. Winblad, “Monoamine oxidase-A and -B activities in the brain stem of schizophrenics and non-schizophrenic psychotics,” Journal of Neural Transmission, vol. 52, no. 1-2, pp. 23–32, 1981. View at Google Scholar · View at Scopus
  40. P. Costa-Mallen, S. N. Kelada, L. G. Costa, and H. Checkoway, “Characterization of the in vitro transcriptional activity of polymorphic alleles of the human monoamine oxidase-B gene,” Neuroscience Letters, vol. 383, no. 1-2, pp. 171–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Garpenstrand, J. Ekblom, K. Forslund, G. Rylander, and L. Oreland, “Platelet monoamine oxidase activity is related to MAOB intron 13 genotype,” Journal of Neural Transmission, vol. 107, no. 5, pp. 523–530, 2000. View at Google Scholar · View at Scopus
  42. S. N. Kelada, P. Costa-Mallen, L. G. Costa et al., “Gender difference in the interaction of smoking and monoamine oxidase B intron 13 genotype in Parkinson's disease,” Neurotoxicology, vol. 23, no. 4-5, pp. 515–519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. E. S. Herbener and M. Harrow, “Longitudinal assessment of negative symptoms in schizophrenia/schizoaffective patients, other psychotic patients, and depressed patients,” Schizophrenia Bulletin, vol. 27, no. 3, pp. 527–537, 2001. View at Google Scholar · View at Scopus
  44. M. E. Kelley, D. P. Van Kammen, and D. N. Allen, “Empirical validation of primary negative symptoms: independence from effects of medication and psychosis,” American Journal of Psychiatry, vol. 156, no. 3, pp. 406–411, 1999. View at Google Scholar · View at Scopus
  45. J. Balciuniene, L. Emilsson, L. Oreland, U. Pettersson, and E. E. Jazin, “Investigation of the functional effect of monoamine oxidase polymorphisms in human brain,” Human Genetics, vol. 110, no. 1, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus