Table of Contents
ISRN Spectroscopy
Volume 2012, Article ID 876718, 4 pages
http://dx.doi.org/10.5402/2012/876718
Research Article

Predicting Cold Flow Properties of Diesel by Terahertz Time-Domain Spectroscopy

College of Science, China University of Petroleum, Beijing 102249, China

Received 11 February 2012; Accepted 2 March 2012

Academic Editors: C. S. Ha, J. Kasperczyk, S. Palaniappan, and Y. Ueno

Copyright © 2012 Hui Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Han, Y. Song, and T. Ren, “Impact of alkyl methacrylate-maleic anhydride copolymers as pour point depressant on crystallization behavior of diesel fuel,” Energy and Fuels, vol. 23, no. 5, pp. 2576–2580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Pasadakis, S. Sourligas, and C. Foteinopoulos, “Prediction of the distillation profile and cold properties of diesel fuels using mid-IR spectroscopy and neural networks,” Fuel, vol. 85, no. 7-8, pp. 1131–1137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Pasquini and A. F. Bueno, “Characterization of petroleum using near-infrared spectroscopy: quantitative modeling for the true boiling point curve and specific gravity,” Fuel, vol. 86, no. 12-13, pp. 1927–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Cookson, P. Iliopoulos, and B. E. Smith, “Composition-property relations for jet and diesel fuels of variable boiling range,” Fuel, vol. 74, no. 1, pp. 70–78, 1995. View at Google Scholar · View at Scopus
  5. H. Wang and G. Zhao, “Study on the THz spectra of four kinds of Nipagin esters,” Chinese Optics Letters, vol. 9, no. 1, supplement, Article ID S10503, 2011. View at Publisher · View at Google Scholar
  6. Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy,” Analytical Chemistry, vol. 78, no. 15, pp. 5424–5428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Applied Physics Letters, vol. 86, no. 24, Article ID 241116, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Li and X. J. Li, “Determination principal component content of seed oils by THz-TDS,” Chemical Physics Letters, vol. 476, no. 1–3, pp. 92–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Li, Z. Hong, J. He, and Y. Chen, “Precisely optical material parameter determination by time domain waveform rebuilding with THz time-domain spectroscopy,” Optics Communications, vol. 283, no. 23, pp. 4701–4706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Hu, X. H. Wang, L. T. Guo, C. L. Zhang, H. B. Liu, and X. C. Zhang, “Absorption and dispersion of vegetable oil and animal fat in THz range,” Acta Physica Sinica, vol. 54, no. 9, pp. 4124–4128, 2005. View at Google Scholar · View at Scopus
  11. M. Del Carmen García, M. Orea, L. Carbognani, and A. Urbina, “The effect of paraffinic fractions on crude oil wax crystallization,” Petroleum Science and Technology, vol. 19, no. 1-2, pp. 189–196, 2001. View at Publisher · View at Google Scholar
  12. D. W. Jennings and J. Breitigam, “Paraffin inhibitor formulations for different application environments: from heated injection in the desert to extreme cold arctic temperatures,” Energy and Fuels, vol. 24, no. 4, pp. 2337–2349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Y. Zhang, T. Ji, X. H. Yu, T. Q. Xiao, and H. J. Xu, “A method for quantitative analysis of chemical mixtures with THz time domain spectroscopy,” Chinese Physics Letters, vol. 23, no. 8, article 076, pp. 2239–2242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L. I. Jiusheng, “Optical parameters of vegetable oil studied by terahertz time-domain spectroscopy,” Applied Spectroscopy, vol. 64, no. 2, pp. 231–234, 2010. View at Google Scholar · View at Scopus
  15. A. L. C. Machado, E. F. Lucas, and G. González, “Poly(ethylene-co-vinyl acetate) (EVA) as wax inhibitor of a Brazilian crude oil: oil viscosity, pour point and phase behavior of organic solutions,” Journal of Petroleum Science and Engineering, vol. 32, no. 2–4, pp. 159–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Soldi, A. R. S. Oliveira, R. V. Barbosa, and M. A. F. César-Oliveira, “Polymethacrylates: pour point depressants in diesel oil,” European Polymer Journal, vol. 43, no. 8, pp. 3671–3678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Song, T. Ren, X. Fu, and X. Xu, “Study on the relationship between the structure and activities of alkyl methacrylate-maleic anhydride polymers as cold flow improvers in diesel fuels,” Fuel Processing Technology, vol. 86, no. 6, pp. 641–650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Ghosh and S. B. Jaffe, “Detailed composition-based model for predicting the cetane number of diesel fuels,” Industrial and Engineering Chemistry Research, vol. 45, no. 1, pp. 346–351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Creton, C. Dartiguelongue, T. De Bruin, and H. Toulhoat, “Prediction of the cetane number of diesel compounds using the quantitative structure property relationship,” Energy and Fuels, vol. 24, no. 10, pp. 5396–5403, 2010. View at Publisher · View at Google Scholar · View at Scopus