Table of Contents
ISRN Spectroscopy
Volume 2012, Article ID 896492, 5 pages
http://dx.doi.org/10.5402/2012/896492
Research Article

Effect of Stepwise Replacement of Non-Oxide to Oxide Group on Structural Properties of ·LiF· Glasses

1Department of Physics, Maharshi Dayanand University, Rohtak 124 001, India
2Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, India

Received 2 August 2012; Accepted 28 August 2012

Academic Editors: V. Di Noto, A. A. Ensafi, and S. Yannopoulos

Copyright © 2012 Susheel Arora et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Boussard-Plédel, M. Le Floch, G. Fonteneau et al., “The structure of a boron oxyfluoride glass, an inorganic cross-linked chain polymer,” Journal of Non-Crystalline Solids, vol. 209, no. 3, pp. 247–256, 1997. View at Google Scholar · View at Scopus
  2. G. D. Chryssikos, M. S. Bitsis, J. A. Kapoutsis, and E. I. Kamitsos, “Vibrational investigation of lithium metaborate-metaaluminate glasses and crystals,” Journal of Non-Crystalline Solids, vol. 217, no. 2-3, pp. 278–290, 1997. View at Google Scholar · View at Scopus
  3. C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Boron oxyfluoride glasses in the BOF system: new polymeric spaghetti-type glasses,” Journal of Non-Crystalline Solids, vol. 188, no. 1-2, pp. 147–152, 1995. View at Google Scholar · View at Scopus
  4. N. Soga, “Elastic moduli and fracture toughness of glass,” Journal of Non-Crystalline Solids, vol. 73, no. 1–3, pp. 305–313, 1985. View at Google Scholar · View at Scopus
  5. I. Z. Hager, “Elastic moduli of boron oxyfluoride glasses: experimental determinations and application of Makishima and Mackenzie's theory,” Journal of Materials Science, vol. 37, no. 7, pp. 1309–1313, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Z. Hager and M. El-Hofy, “Investigation of spectral absorption and elastic moduli of lithium haloborate glasses,” Physica Status Solidi A, vol. 198, no. 1, pp. 7–17, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Shelby and L. K. Downie, “Properties and structure of sodium fluoroborate glasses,” Physics and Chemistry of Glasses, vol. 30, no. 4, pp. 151–154, 1989. View at Google Scholar · View at Scopus
  8. G. D. Chryssikos, E. I. Kamitsos, A. P. Patsis, M. S. Bitsis, and M. A. Karakassides, “The devitrification of lithium metaborate: polymorphism and glass formation,” Journal of Non-Crystalline Solids, vol. 126, no. 1-2, pp. 42–51, 1990. View at Google Scholar · View at Scopus
  9. E. I. Kamitsos, A. P. Patsis, and G. D. Chryssikos, “Infrared reflectance investigation of alkali diborate glasses,” Journal of Non-Crystalline Solids, vol. 152, no. 2-3, pp. 246–257, 1993. View at Google Scholar · View at Scopus
  10. C. Hwang, S. Fujino, and K. Morinaga, “Density of Bi2O3-B2O3 binary melts,” Journal of the American Ceramic Society, vol. 87, no. 9, pp. 1677–1682, 2004. View at Google Scholar · View at Scopus
  11. I. I. Oprea, H. Hesse, and K. Betzler, “Optical properties of bismuth borate glasses,” Optical Materials, vol. 26, no. 3, pp. 235–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Fujiwara, T. Suzuki, N. Sugimoto, H. Kanbara, and K. Hirao, “THz optical switching in glasses containing bismuth oxide,” Journal of Non-Crystalline Solids, vol. 259, no. 1–3, pp. 116–120, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Sugimoto, “Ultrafast optical switches and wavelength division multiplexing (WDM) amplifiers based on bismuth oxide glasses,” Journal of the American Ceramic Society, vol. 85, no. 5, pp. 1083–1088, 2002. View at Google Scholar · View at Scopus
  14. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electronics Letters, vol. 41, no. 14, pp. 795–797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Optics Express, vol. 13, no. 18, pp. 6864–6869, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Di Noto, M. Bettinelli, M. Furlani, S. Lavina, and M. Vidali, “Conductivity, luminescence and vibrational studies of the poly(ethylene glycol) 400 electrolyte based on europium trichloride,” Macromolecular Chemistry and Physics, vol. 197, no. 1, pp. 375–388, 1996. View at Google Scholar · View at Scopus
  17. V. Di Noto, M. Furlani, and S. Lavina, “Synthesis, characterization and ionic conductivity of poly[(oligoethylene oxide) ethoxysilane] and poly[(oligoethylene oxide) ethoxysilane] / (EuCl3)0.67,” Polymers for Advanced Technologies, vol. 7, no. 9, pp. 759–767, 1996. View at Google Scholar · View at Scopus
  18. C. H. Kim, H. L. Park, and S. I. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Communications, vol. 101, no. 2, pp. 109–113, 1997. View at Google Scholar · View at Scopus
  19. A. M. Srivastava, “Luminescence of divalent bismuth in M2+ BPO5 (M2+ = Ba2+, Sr2+ and Ca2+),” Journal of Luminescence, vol. 78, no. 4, pp. 239–243, 1998. View at Google Scholar · View at Scopus
  20. L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural of characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” Journal of Raman Spectroscopy, vol. 36, no. 3, pp. 262–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. B. V. R. Chowdari and Z. Rong, “Study of the fluorinated lithium borate glasses,” Solid State Ionics, vol. 78, no. 1-2, pp. 133–142, 1995. View at Google Scholar · View at Scopus
  22. P. Paşcuţa, M. Boşca, S. Rada, M. Culea, I. Bratu, and E. Culea, “FTIR spectroscopic study of Gd2O3-Bi2O3-B2O3 glasses,” Journal of Optoelectronics and Advanced Materials, vol. 10, no. 9, pp. 2416–2419, 2008. View at Google Scholar · View at Scopus
  23. S. Bale and S. Rahman, “Glass structure and transport properties of Li2O containing zinc bismuthate glasses,” Optical Materials, vol. 31, no. 2, pp. 333–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Bajaj and A. Khanna, “Crystallization of bismuth borate glasses,” Journal of Physics Condensed Matter, vol. 21, no. 3, Article ID 035112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Ardelean and S. Cora, “FT-IR, Raman and UV-VIS spectroscopic studies of copper doped 3Bi2O3·B2O3 glass matix,” Journal of Materials Science, vol. 19, no. 6, pp. 584–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Kundu, R. L. Dhiman, A. S. Maan, D. R. Goyal, and S. Arora, “Characterization and electrical conductivity of Vanadium doped strontium bismuth borate glasses,” Journal of Optoelectronics and Advanced Materials, vol. 12, no. 12, pp. 2373–2379, 2010. View at Google Scholar · View at Scopus
  27. E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure,” Journal of Physical Chemistry, vol. 91, no. 5, pp. 1073–1079, 1987. View at Google Scholar · View at Scopus
  28. F. Chen, S. Dai, Q. Nie, T. Xu, X. Shen, and X. Wang, “Glass formation and optical band gap studies on Bi2O3-B2O3-BaO ternary system,” Journal Wuhan University of Technology, Materials Science Edition, vol. 24, no. 5, pp. 716–720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. El-Hofy and I. Z. Hager, “Ionic conductivity in lithium haloborate glasses,” Physica Status Solidi A, vol. 199, no. 3, pp. 448–456, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. El-Adawy and Y. Moustafa, “Elastic properties of bismuth borate glasses,” Journal of Physics D, vol. 32, no. 21, pp. 2791–2796, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Mansour, G. M. El-Damrawi, Y. M. Moustafa, S. Abd El-Maksoud, and H. Doweidar, “Polaronic conduction in barium borate glasses containing iron oxide,” Physica B, vol. 293, no. 3-4, pp. 268–275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. J. A. Duffy and M. D. Ingram, “Optical basicity-IV: influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses,” Journal of Inorganic and Nuclear Chemistry, vol. 37, no. 5, pp. 1203–1206, 1975. View at Google Scholar · View at Scopus