Abstract

Let =(,), and let 𝑤𝜌(𝑥)=|𝑥|𝜌𝑒𝑄(𝑥), where 𝜌>1/2 and 𝑄𝐶1()+=[0,) is an even function. Then we can construct the orthonormal polynomials 𝑝𝑛(𝑤2𝜌;𝑥) of degree 𝑛 for 𝑤2𝜌(𝑥). In this paper for an even integer 𝜈2 we investigate the convergence theorems with respect to the higher-order Hermite and Hermite-Fejér interpolation polynomials and related approximation process based at the zeros {𝑥𝑘,𝑛,𝜌}𝑛𝑘=1 of 𝑝𝑛(𝑤2𝜌;𝑥). Moreover, for an odd integer 𝜈1, we give a certain divergence theorem with respect to the higher-order Hermite-Fejér interpolation polynomials based at the zeros {𝑥𝑘,𝑛,𝜌}𝑛𝑘=1 of 𝑝𝑛(𝑤2𝜌;𝑥).

1. Introduction

Let =(,), and let 𝑄𝐶1()+=[0,) be an even function. Consider the weight 𝑤(𝑥)=exp(𝑄(𝑥)), and define, for 𝜌>1/2, 𝑤𝜌(𝑥)=|𝑥|𝜌𝑤(𝑥),𝑥.(1.1) Suppose that 0𝑥𝑛𝑤𝜌(𝑥)𝑑𝑥<, for all 𝑛=0,1,2,. Then we can construct the orthonormal polynomials 𝑝𝑛,𝜌(𝑥)=𝑝𝑛(𝑤2𝜌;𝑥) of degree 𝑛 for 𝑤2𝜌(𝑥); that is, 𝑝𝑛,𝜌(𝑥)𝑝𝑚,𝜌(𝑥)𝑤2𝜌(𝑥)𝑑𝑥=𝛿𝑚,𝑛(Kroneckerdelta).(1.2) We write 𝑝𝑛,𝜌(𝑥) by 𝑝𝑛,𝜌(𝑥)=𝛾𝑛𝑥𝑛+,𝛾𝑛=𝛾𝑛,𝜌>0,(1.3) and denote the zeros of 𝑝𝑛,𝜌(𝑥) by <𝑥𝑛,𝑛,𝜌<𝑥𝑛1,𝑛,𝜌<<𝑥2,𝑛,𝜌<𝑥1,𝑛,𝜌<.(1.4)

Let 𝒫𝑛 denote the class of polynomials with degree at most 𝑛. For 𝑓𝐶() we define the higher-order Hermite-Fejér interpolation polynomial 𝐿𝑛(𝜈,𝑓;𝑥)𝒫𝜈𝑛1 based at the zeros {𝑥𝑘,𝑛,𝜌}𝑛𝑘=1 as follows: 𝐿𝑛(𝑖)𝜈,𝑓;𝑥𝑘,𝑛,𝜌=𝛿0,𝑖𝑓𝑥𝑘,𝑛,𝜌for𝑘=1,2,,𝑛,𝑖=0,1,,𝜈1.(1.5) We note that 𝐿𝑛(1,𝑓;𝑥) is the Lagrange interpolation polynomial, 𝐿𝑛(2,𝑓;𝑥) is the ordinary Hermite-Fejér interpolation polynomial, and 𝐿𝑛(4,𝑓;𝑥) is the Krylov-Stayermann polynomial. For the general cases Kanjin and Sakai [1, 2] started to investigate the so-called Freud-type weights. The fundamental polynomials 𝑘,𝑛,𝜌(𝜈;𝑥)𝒫𝜈𝑛1 for the higher-order Hermite-Fejér interpolation polynomial 𝐿𝑛(𝜈,𝑓;𝑥) are defined as follows: 𝑘,𝑛,𝜌(𝜈;𝑥)=𝑙𝜈𝑘,𝑛,𝜌(𝑥)𝜈1𝑖=0𝑒𝑖(𝜈,𝑘,𝑛)𝑥𝑥𝑘,𝑛,𝜌𝑖,𝑙𝑘,𝑛,𝜌𝑝(𝑥)=𝑛𝑤2𝜌;𝑥𝑥𝑥𝑘,𝑛,𝜌𝑝𝑛𝑤2𝜌;𝑥𝑘,𝑛,𝜌,𝑘,𝑛,𝜌𝜈;𝑥𝑝,𝑛,𝜌=𝛿𝑘,𝑝,(𝑖)𝑘,𝑛,𝜌𝜈;𝑥𝑝,𝑛,𝜌=0,𝑘,𝑝=1,2,,𝑛,𝑖=1,2,,𝜈1.(1.6) Using them, we can write 𝐿𝑛(𝜈,𝑓;𝑥)=𝑛𝑘=1𝑓𝑥𝑘,𝑛,𝜌𝑘,𝑛,𝜌(𝜈;𝑥).(1.7) Furthermore, we extend the operator 𝐿𝑛(𝜈,𝑓;𝑥). Let 𝑙 be a nonnegative integer, and let 𝜈1𝑙. For 𝑓𝐶𝑙() we define the (𝑙,𝜈)-order Hermite-Fejér interpolation polynomials 𝐿𝑛(𝑙,𝜈,𝑓;𝑥)𝒫𝜈𝑛1 as follows: for each 𝑘=1,2,,𝑛, 𝐿𝑛𝑙,𝜈,𝑓;𝑥𝑘,𝑛,𝜌𝑥=𝑓𝑘,𝑛,𝜌,𝐿𝑛(𝑗)𝑙,𝜈,𝑓;𝑥𝑘,𝑛,𝜌=𝑓(𝑗)𝑥𝑘,𝑛,𝜌𝐿,𝑗=1,2,,𝑙,𝑛(𝑗)𝑙,𝜈,𝑓;𝑥𝑘,𝑛,𝜌=0,𝑗=𝑙+1,𝑙+2,,𝜈1.(1.8) Especially, 𝐿𝑛(0,𝜈,𝑓;𝑥) is equal to 𝐿𝑛(𝜈,𝑓;𝑥), and for each 𝑃𝒫𝜈𝑛1 we see 𝐿𝑛(𝜈1,𝜈,𝑃;𝑥)=𝑃(𝑥); that is, for 𝑓𝐶(𝜈1)(), 𝐿𝑛(𝜈1,𝜈,𝑓;𝑥) is the Hermite interpolation polynomial. The fundamental polynomials 𝑠,𝑘,𝑛,𝜌(𝑙,𝜈;𝑥)𝒫𝜈𝑛1, 𝑘=1,2,,𝑛, of 𝐿𝑛(𝑙,𝜈,𝑓;𝑥) are defined by 𝑠,𝑘,𝑛,𝜌(𝑙,𝜈;𝑥)=𝑙𝜈𝑘,𝑛,𝜌(𝑥)𝜈1𝑖=𝑠𝑒𝑠,𝑖(𝜈,𝑘,𝑛)𝑥𝑥𝑘,𝑛,𝜌𝑖,(𝑗)𝑠,𝑘,𝑛,𝜌𝑙,𝜈;𝑥𝑝,𝑛,𝜌=𝛿𝑠,𝑗𝛿𝑘,𝑝,𝑗,𝑠=0,1,,𝜈1,𝑝=1,2,,𝑛.(1.9) Then we have 𝐿𝑛(𝑙,𝜈,𝑓;𝑥)=𝑛𝑙𝑘=1𝑠=0𝑓(𝑠)𝑥𝑘,𝑛,𝜌𝑠,𝑘,𝑛,𝜌(𝑙,𝜈;𝑥).(1.10) For the ordinary Hermite and Hermite-Fejér interpolation polynomial 𝐿𝑛(1,2,𝑓;𝑥), 𝐿𝑛(2,𝑓;𝑥) and the related approximation process, Lubinsky [3] gave some interesting convergence theorems.

Our purpose in this paper is to study 𝐿𝑛(𝜈,𝑓;𝑥) and 𝐿𝑛(𝑙,𝜈,𝑓;𝑥) as certain analogies of the Lubinsky theorems in [3] and the related approximation process for the exponential-type weights. Kasuga and Sakai [48] investigated the convergence and divergence theorems for the Freud-type weights. Then for an even integer 𝜈2 we give the convergence theorems for them; moreover, for an odd integer 𝜈1, we obtain a certain divergence theorem with respect to 𝐿𝑛(𝜈,𝑓;𝑥). In Section 1, we give the preliminaries for these studies, and in Section 2 we write some preliminary description. In Section 3 we report our theorems with some lemmas, and in Section 4 we prove the theorems. Finally, in Section 5, for an odd integer 𝜈1 we obtain a certain divergence theorem with respect to 𝐿𝑛(𝜈,𝑓;𝑥).

In what follows we abbreviate several notations as 𝑥𝑘,𝑛=𝑥𝑘,𝑛,𝜌, 𝑘𝑛(𝑥)=𝑘,𝑛,𝜌(𝜈,𝑥), 𝑙𝑘𝑛(𝑥)=𝑙𝑘,𝑛,𝜌(𝑥), 𝑠𝑘𝑛(𝑥)=𝑠,𝑘,𝑛,𝜌(𝜈,𝑥) and 𝑝𝑛(𝑥)=𝑝𝑛,𝜌(𝑥) if there is no confusion. For arbitrary nonzero real-valued functions 𝑓(𝑥) and 𝑔(𝑥), we write 𝑓(𝑥)𝑔(𝑥) if there exist constants 𝐶1,𝐶2>0 independent of 𝑥 such that 𝐶1𝑔(𝑥)𝑓(𝑥)𝐶2𝑔(𝑥) for all 𝑥. For arbitrary positive sequences {𝑐𝑛}𝑛=1 and {𝑑𝑛}=1, we define 𝑐𝑛𝑑𝑛 similarly.

Throughout this paper 𝐶,𝐶1,𝐶2, denote positive constants independent of 𝑛,𝑥,𝑡, or polynomials 𝑃𝑛(𝑥), and the same symbol does not necessarily denote the same constant in different occurrences.

2. Preliminaries

A function 𝑓++ is said to be quasi-increasing if there exists 𝐶>0 such that 𝑓(𝑥)𝐶𝑓(𝑦) for 0<𝑥<𝑦.

Definition 2.1 (see [9]). Let 𝑄+ be a continuous even function satisfying the following properties.(a)𝑄(𝑥) is continuous in and 𝑄(0)=0. (b)𝑄(𝑥) exists and is positive in {0}. (c)lim𝑥𝑄(𝑥)=. (d) The function 𝑇(𝑥)=𝑥𝑄(𝑥)𝑄(𝑥),𝑥0,(2.1) is quasi-increasing in (0,), with 𝑇(𝑥)Λ>1 for 𝑥+{0}.(e) There exists 𝐶1>0 such that 𝑄(𝑥)||𝑄||(𝑥)𝐶1||𝑄||(𝑥)𝑄(𝑥),a.e.𝑥{0}.(2.2) Then we say that 𝑤=exp(𝑄) is in the class (𝐶2). Besides, if there exist a compact subinterval 𝐽(0) of and 𝐶2>0 such that 𝑄(𝑥)||𝑄||(𝑥)𝐶2||𝑄||(𝑥)𝑄(𝑥),a.e.𝑥𝐽,(2.3) then we say that 𝑤=exp(𝑄) is in the class (𝐶2+).

Example 2.2. We present some typical examples of 𝑄(𝑥) satisfying 𝑤=exp(𝑄)(𝐶2+). (1)If a continuous exponential 𝑄(𝑥) satisfies 1<Λ1𝑥𝑄(𝑥)𝑄(𝑥)Λ2(2.4) with some constants Λ𝑖, 𝑖=1,2, then 𝑤(𝑥)=exp(𝑄(𝑥)) is called a Freud weight. The class (𝐶2+) contains the Freud weights. (2)(See [9]) For 𝛼>1 and a nonnegative integer 𝑟, we put 𝑄(𝑥)=𝑄𝑟,𝛼(𝑥)=exp𝑟(|𝑥|𝛼)exp𝑟(0),(2.5) where, for 𝑟1, exp𝑟(𝑥)=exp(exp(exp(exp𝑥)))(𝑟-times)(2.6) and exp0(𝑥)=𝑥. (3)(See [10]) For 𝑚0,𝛼0 with 𝛼+𝑚>1, we put 𝑄(𝑥)=𝑄𝑟,𝛼,𝑚(𝑥)=|𝑥|𝑚exp𝑟(|𝑥|𝛼)𝛼exp𝑟(0),(2.7) where for 𝑟>0 we suppose 𝛼=0 if 𝛼=0; 𝛼=1 otherwise. For 𝑟=0 we suppose 𝑚>1 and 𝛼=0. (4)(See [10]) For 𝛼>1, we put 𝑄(𝑥)=𝑄𝛼(𝑥)=(1+|𝑥|)|𝑥|𝛼1.(2.8) For 𝑥>0, we define the Mhaskar-Rakhmanov-Saff number 𝑎𝑥 by the equation2𝑥=𝜋10𝑎𝑥𝑢𝑄𝑎𝑥𝑢1𝑢21/2𝑑𝑢.(2.9) We have the following estimates for the coefficients 𝑒𝑠,𝑖(𝜈,𝑘,𝑛)(𝑒𝑖(𝜈,𝑘,𝑛)=𝑒0,𝑖(𝜈,𝑘,𝑛)) in (1.6) or (1.9).

Lemma 2.3 (see [11, Theorem 2.6]). Let 𝑤(𝑥)=exp(𝑄(𝑥))(𝐶2+). For each 𝑘=1,2,,𝑛 and 𝑠=0,1,,𝜈1, we have 𝑒0,0(𝜈,𝑘,𝑛)=𝑒0(𝜈,𝑘,𝑛)=1, ||𝑒𝑠,𝑖||𝑛(𝜈,𝑘,𝑛)𝐶𝑎22𝑛𝑥2𝑘,𝑛𝑖𝑠,𝑠=1,2,,𝜈1,𝑖=𝑠,𝑠+1,,𝜈1.(2.10)

If we consider the higher-order Hermite-Fejér interpolation polynomial 𝐿𝑛(𝜈,𝑓;𝑥) on a certain finite interval, then we can see a remarkable difference between the parity of 𝜈, for example, the Lagrange interpolation polynomial 𝐿𝑛(1,𝑓;𝑥) and the ordinary Hermite-Fejér interpolation polynomial 𝐿𝑛(2,𝑓;𝑥) ([1217]). Also, we can see a similar phenomenon in the case of the infinite intervals ([1, 2, 48]). To describe these aspects, however, we need a further strengthened definition for 𝜈2 than Definition 2.1.

Definition 2.4. Let 𝑤(𝑥)=exp(𝑄(𝑥))(𝐶2+), and let 𝜈1 be an integer. Assume that 𝑄(𝑥) is a 𝜈-times continuously differentiable function on and satisfies the following.(a)𝑄(𝜈+1)(𝑥) exists and 𝑄(𝑖)(𝑥), 0𝑖𝜈+1, are positive for 𝑥>0. (b)There exist constants 𝐶𝑖>0 such that||𝑄(𝑖+1)||(𝑥)𝐶𝑖||𝑄(𝑖)||||𝑄(𝑥)||(𝑥)𝑄(𝑥),𝑥{0},𝑖=1,2,,𝜈.(2.11)(c)There exist 0𝛿<1 and 𝑐1>0 such that 𝑄(𝜈+1)1(𝑥)𝐶𝑥𝛿,𝑥0,𝑐1.(2.12) Then we say that 𝑤(𝑥)=exp(𝑄(𝑥)) is in the class 𝜈(𝐶2+). (d)Suppose one of the following.(d-1)𝑄(𝑥)/𝑄(𝑥) is quasi-increasing on a certain positive interval [𝑐2,).(d-2)𝑄(𝜈+1)(𝑥) is nondecreasing on a certain positive interval [𝑐2,).(d-3)There exist constants 𝐶>0 and 0𝛿<1 such that 𝑄(𝜈+1)(𝑥)𝐶(1/𝑥)𝛿 on (0,).Then one says that 𝑤(𝑥)=exp(𝑄(𝑥)) is in the class 𝜈(𝐶2+).

Example 2.5 (cf. [10, Theorem 3.1]). Let 𝜈 be a positive integer, and let 𝑄𝑟,𝛼,𝑚 be defined in (2.7).(1)Let 𝑚 and 𝛼 be nonnegative even integers with 𝑚+𝛼>1. Then 𝑤(𝑥)=exp(𝑄𝑟,𝛼,𝑚)𝜈(𝐶2+). (a)If 𝑟>0, then we see that 𝑄𝑟,𝛼,𝑚(𝑥)/𝑄𝑟,𝛼,𝑚(𝑥) is quasi-increasing on a certain positive interval (𝑐1,) and 𝑄𝑟,0,𝑚(𝑥) is nondecreasing on (0,). (b)If 𝑟=0, then we see that 𝑄0,0,𝑚(𝑥),𝑚2, is nondecreasing on (0,). Hence, 𝑤(𝑥)=exp(𝑄𝑟,𝛼,𝑚)𝜈(𝐶2+). (2)Let 𝑚+𝛼𝜈>0. Then 𝑤(𝑥)=exp(𝑄𝑟,𝛼,𝑚)𝜈(𝐶2+), and one has the following. (c)If 𝑟2 and 𝛼>0, then there exists a constant 𝑐1>0 such that 𝑄𝑟,𝛼,𝑚(𝑥)/𝑄𝑟,𝛼,𝑚(𝑥) is quasi-increasing on (𝑐1,). (d)Let 𝑟=1. If 𝛼1, then there exists a constant 𝑐2>0 such that 𝑄1,𝛼,𝑚(𝑥)/𝑄1,𝛼,𝑚(𝑥) is quasi-increasing on (𝑐2,), and, if 0<𝛼<1, then 𝑄1,𝛼,𝑚(𝑥)/𝑄1,𝛼,𝑚(𝑥) is quasi-decreasing on (𝑐2,). (e) Let 𝑟=1 and 0<𝛼<1, then 𝑄(𝜈+1)1,𝛼,𝑚(𝑥) is nondecreasing on a certain positive interval on (𝑐2,).Hence, 𝑤(𝑥)=exp(𝑄𝑟,𝛼,𝑚)𝜈(𝐶2+).

Definition 2.6. One uses the following notation: 𝜑𝑢𝑎(𝑥)=𝑢𝑢1|𝑥|/𝑎2𝑢1|𝑥|/𝑎𝑢+𝛿𝑢,|𝑥|𝑎𝑢;𝜑𝑢𝑎𝑢,𝑎𝑢𝛿<|𝑥|,𝑢=𝑎𝑢𝑇𝑢2/3,𝑢>0.(2.13)

Lemma 2.7 (see [18, Corollary 4.5]). Let 𝑤𝜌(𝑥)=|𝑥|𝜌exp(𝑄(𝑥)), exp(𝑄)𝜈(𝐶2+). If 𝑥𝑘,𝑛0 and |𝑥𝑘,𝑛|𝑎𝑛(1+𝛿𝑛), then 𝑒0(𝜈,𝑘,𝑛)=1 and, for 𝑖=1,2,,𝜈1, ||𝑒𝑖||𝑇𝑎(𝜈,𝑘,𝑛)𝐶𝑛𝑎𝑛+||𝑄𝑥𝑘,𝑛||+1||𝑥𝑘,𝑛||𝑖𝑛𝑎2𝑛||𝑥𝑘,𝑛||+𝑇𝑎𝑛𝑎𝑛𝑖𝑖,(2.14) where 𝑖=1,𝑖:odd,0,𝑖:even.(2.15) For 𝑥𝑘,𝑛=0 one has 𝑒0||𝑒(𝜈,𝑘,𝑛)=1,𝑖||𝑛(𝜈,𝑘,𝑛)𝐶𝑎𝑛𝑖,𝑖=1,2,,𝜈1.(2.16)

Remark 2.8. In [19, Theorem 2.2] we see that 𝑥1,𝑛<𝑎𝑛 if 𝑛 is large enough. Therefore Lemma 2.7 holds for all 𝑥𝑘,𝑛, 𝑘=1,2,,𝑛.

Levin and Lubinsky (see [9, Lemma 3.7]) showed that there exists 𝐶>0 such that for some 𝜀>0 and for large enough 𝑡, 𝑇𝑎𝑡𝐶𝑡2𝜀.(2.17)

In [20] we have the following estimations.

Lemma 2.9 (see [20, Theorem 1.6]). Let 𝑤=exp(𝑄)(𝐶2+). (1)Let 𝑇(𝑥) be unbounded. Then, for any 𝜂>0, there exists 𝐶(𝜂)>0 such that, for 𝑡1,𝑎𝑡𝐶(𝜂)𝑡𝜂.(2.18)(2)Let 𝜆=𝐶1 be the constant in Definition 2.1(e), that is, 𝑄(𝑥)𝑄𝑄(𝑥)𝜆(𝑥)𝑄(𝑥),a.e.𝑥{0}.(2.19) If 𝜆>1, then there exists 𝐶(𝜆,𝜂) such that 𝑇𝑎𝑡𝐶(𝜆,𝜂)𝑡2(𝜂+𝜆1)/(𝜆+1),𝑡1,(2.20) and, if 0<𝜆1, then for any 𝜂>0 there exists 𝐶(𝜆,𝜂) such that 𝑇𝑎𝑡𝐶(𝜆,𝜂)𝑡𝜂,𝑡1.(2.21)

Remark 2.10. (1) If 𝑇(𝑥) is bounded, then 𝑤 is called a Freud-type weight, and, if 𝑇(𝑥) is unbounded, then 𝑤 is called an Erdős-type weight.
(2) In (2.20) and (2.21), we set 0<𝜂<2 and 2𝜀=2𝜂,0<𝜆1,(2𝜂)(𝜆+1),𝜆>1.(2.22)
Then (2.17) holds.
(3) If limsup𝑥𝑄(𝑥)𝑄(𝑥)𝑄(𝑥)21,(2.23)
then we have (2.21). Note that all the examples in Example 2.5 satisfy this inequality.
(4) For the Freud-type exponent 𝑄(𝑥)=|𝑥|𝑚,𝑚>1, we have 𝑇𝑎𝑡=𝑚,𝑎𝑡𝑡1/𝑚.(2.24)
(5) The inequality (2.18) implies 𝑛0<𝐶𝑎𝑛𝑇𝑎𝑛𝑎𝑛𝜈1.(2.25)

3. Theorems

In the rest of this paper we assume the following for the weight 𝑤.

Assumption 3.1. Consider the weight 𝑤𝜌(𝑥)=|𝑥|𝜌exp(𝑄(𝑥)), exp(𝑄(𝑥))𝜈(𝐶2+), 𝜌0. (a)(cf. [20, Theorem 1.4]) If 𝑇(𝑥) is bounded, then we suppose, for 𝛿 in (2.12), 𝑎𝑛𝐶𝑛1/(1+𝜈𝛿).(3.1)(b)There exist 0𝛾<1 and 𝐶(𝛾)>0 such that 𝑇𝑎𝑛𝐶(𝛾)𝑛𝛾;(3.2)here, if 𝑇(𝑥) is bounded, that is, a Freud-type weight, then we set 𝛾=0, and if 𝑇(𝑥) is unbounded, that is, an Erdős-type weight, then we set 0<𝛾<1. Define 𝜀𝑛𝑎=𝑛𝑛,𝑇𝑎𝑛𝑎𝑛1<1,𝑛1𝛾,𝑇𝑎𝑛𝑎𝑛1.(3.3)

Remark 3.2. (1) If 𝑇(𝑥) is unbounded, then (3.1) holds because of Lemma 2.9 (2.21).
(2) (3.2) holds for 𝛾=2(𝜂+𝜆1)𝜆+1,0<𝜆<3.(3.4)
(3) In (3.3) we note that 𝜀𝑛log𝑛0 as 𝑛.

We shall state our theorems. Put 𝑋𝑛(𝜈,𝑓;𝑥)=𝑛𝑗=1𝑓𝑥𝑗,𝑛,𝜌𝑙𝜈𝑗,𝑛,𝜌(𝑥)𝜈2𝑖=0𝑒𝑖(𝜈,𝑗,𝑛)𝑥𝑥𝑗,𝑛,𝜌𝑖,𝑌𝑛(𝜈,𝑓;𝑥)=𝑛𝑗=1𝑓𝑥𝑗,𝑛,𝜌𝑙𝜈𝑗,𝑛,𝜌(𝑥)𝑒𝜈1(𝜈,𝑗,𝑛)𝑥𝑥𝑗,𝑛,𝜌𝜈1,𝑍𝑛(𝑙,𝜈,𝑓;𝑥)=𝑛𝑙𝑗=1𝑠=1𝑓(𝑠)𝑥𝑗,𝑛,𝜌𝑙𝜈𝑗,𝑛,𝜌(𝑥)𝜈1𝑖=𝑠𝑒𝑠𝑖(𝜈,𝑗,𝑛)𝑥𝑥𝑗,𝑛,𝜌𝑖.(3.5) Furthermore, we consider the class 𝐺={𝑔𝑠𝐶(), 𝑠=𝑙+1,𝑙+2,,𝜈1} and construct the following interpolation polynomial:𝑊𝑛(𝑙,𝜈,𝐺;𝑥)=𝑛𝑗=1𝜈1𝑠=𝑙+1𝑔𝑠𝑥𝑗,𝑛,𝜌𝑙𝜈𝑗,𝑛,𝜌(𝑥)𝜈1𝑖=𝑠𝑒𝑠𝑖(𝜈,𝑗,𝑛)𝑥𝑥𝑗,𝑛,𝜌𝑖.(3.6)

Then we have 𝐿𝑛(𝜈,𝑓;𝑥)=𝑋𝑛(𝜈,𝑓;𝑥)+𝑌𝑛𝐿(𝜈,𝑓;𝑥),𝑛(𝑙,𝜈,𝑓;𝑥)=𝐿𝑛(𝜈,𝑓;𝑥)+𝑍𝑛𝐿(𝑙,𝜈,𝑓;𝑥),𝑛(𝑙,𝜈,𝑓𝐺;𝑥)=𝐿𝑛(𝜈,𝑓;𝑥)+𝑍𝑛(𝑙,𝜈,𝑓;𝑥)+𝑊𝑛(𝑙,𝜈,𝐺;𝑥).(3.7) Define 1Φ(𝑥)=(1+𝑄(𝑥))2/3𝑇(𝑥).(3.8) Here we note that, for some 𝑑>0,Φ(𝑥)𝑄(𝑥)1/3𝑥𝑄(𝑥),|𝑥|𝑑>0.(3.9)

Moreover, we define Φ𝑛𝛿(𝑥)=max𝑛,1|𝑥|𝑎𝑛,𝑛=1,2,3,.(3.10)

Lemma 3.3. Let 𝑤=exp(𝑄)(𝐶2+). Let 𝐿>0 be fixed. Then one has the following: (a)(See [9, Lemma 3.5(a)]) Uniformly for 𝑡>0,𝑎𝐿𝑡𝑎𝑡.(3.11)(b)(See [9, Lemma 3.5(b)]) Uniformly for 𝑡>0,𝑄(𝑗)𝑎𝐿𝑡𝑄(𝑗)𝑎𝑡,𝑗=0,1.(3.12)Moreover, 𝑇𝑎𝐿𝑡𝑎𝑇𝑡.(3.13)(c)(See [9, Lemma 3.11 (3.52)]) Uniformly for 𝑡>0, ||||𝑎1𝐿𝑡𝑎𝑡||||1𝑇𝑎𝑡.(3.14)(d)(See [9, Lemma 3.4 (3.17), (3.18)]) Uniformly for 𝑡>0, one has𝑄𝑎𝑡𝑡𝑇𝑎𝑡,𝑄𝑎𝑡𝑡𝑇𝑎𝑡𝑎𝑡.(3.15)

Lemma 3.4. For 𝑥, we have Φ(𝑥)𝐶Φ𝑛(𝑥),𝑛1.(3.16)

Proof. Let 𝑥=𝑎𝑢,𝑢1. By Lemma 3.3(d) we have 𝑎𝑢𝑄𝑢𝑇𝑎𝑢.(3.17) So, we have 𝛿𝑢1𝑎𝑄𝑢2/3𝑇𝑎𝑢=𝑎𝑢𝑄𝑎𝑢𝑄𝑎𝑢1/3=𝑥𝑄(𝑥)𝑄1/3(𝑥)Φ1𝑎𝑢.(3.18) Now, if 𝑢𝑛/2, then 𝑎1𝑢𝑎𝑛𝑎1𝑛/2𝑎𝑛1𝑇𝑎𝑛1(byLemma3.2(c))𝑎𝑛𝑇𝑛2/3=𝛿𝑛(by(2.17)).(3.19) So, we have Φ𝑛𝑎(𝑥)=1𝑢𝑎𝑛𝑎1𝑢𝑎2𝑢1𝑇𝑎𝑢1(byLemma3.2(c))𝑎𝑢𝑇𝑢2/3=𝛿𝑢Φ(𝑥)(by(2.17)and(3.18)).(3.20) Let 𝑛/2<𝑢<𝑛. Then we have Φ𝑛(𝑥)𝛿𝑛𝛿𝑢Φ(𝑥)(byLemmas3.2(a),(2.17),and(3.18)).(3.21)

Let 𝐶(𝑓) denote a positive constant depending only on 𝑓.

Assumption 3.5. Let 𝑤𝜌(𝑥)=|𝑥|𝜌𝑤(𝑥) and 𝑤(𝑥)=exp(𝑄(𝑥))𝜈(𝐶2+), 𝜌0. Suppose the following.(A-1)Let 𝑓𝐶() satisfy that, for a given 0<𝛿<1,||||𝑤𝑓(𝑥)𝜈𝛿||𝑄(𝑥)||+1(𝑥)|𝑥|𝐶(𝑓),𝑥,(3.22)where we suppose limsup|𝑥|0|𝑓(𝑥)/𝑥|𝐶(𝑓). (A-2)Let 𝑓𝐶𝑙() for a certain 0<𝑙𝜈1. Then we suppose that 𝑓 satisfies ||𝑓(𝑠)||Φ(𝑥)3/4(𝑥)𝑤𝜌(𝑥)𝜈𝐶(𝑓),𝑥,𝑠=1,2,,𝑙.(3.23)(A-3) Let 𝐺={𝑔𝑠𝐶(),𝑠=𝑙+1,𝑙+2,,𝜈1}. Then we suppose that there exists a constant 𝐶>0 such that||𝑔𝑠||Φ(𝑥)3/4(𝑥)𝑤𝜌(𝑥)𝜈𝐶(𝐺),𝑥,𝑠=𝑙+1,𝑙+2,,𝜈1.(3.24)

Remark 3.6. In (3.22), we have the following.(1)𝑓(0)=0 and ||||Φ𝑓(𝑥)3/4(𝑥)𝑤𝜌(𝑥)𝜈||𝑄||+1(𝑥)|𝑥|𝐶(𝑓),𝑥{0}.(3.25)(2) For some positive constant 𝐶, we have |𝑄(𝑥)|+1/|𝑥|𝐶. Hence, from (3.22), it follows that ||||Φ𝑓(𝑥)3/4(𝑥)𝑤𝜌(𝑥)𝜈𝐶(𝑓),𝑥.(3.26) We have a chain of results under Assumption 3.1.

Proposition 3.7. Let 𝜈=1,2,3,. For 𝑓(𝑥) satisfying (3.26), one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑋𝑛(𝜈,𝑓;𝑥)𝐿()𝐶(𝑓).(3.27)

Proposition 3.8. Let 𝜈=2,4,6,. For 𝑓(𝑥) satisfying (3.25), one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑌𝑛(𝜈,𝑓;𝑥)𝐿()𝐶(𝑓)𝜀𝑛log𝑛,(3.28) where 𝜀𝑛 is defined by (3.3).

Proposition 3.9. Let 𝜈=1,2,3,. For 𝑓(𝑥) satisfying (3.23), one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑍𝑛(𝑙,𝜈,𝑓;𝑥)𝐿()𝑎𝐶(𝑓)𝑛log𝑛𝑛,(3.29) and for 𝑓(𝑥) satisfying (3.24) one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑊𝑛(𝑙,𝜈,𝐺;𝑥)𝐿()𝑎𝐶(𝐺)𝑛log𝑛𝑛.(3.30)

Proposition 3.10. Let 𝜈=1,2,3,. Let 𝑃𝒫𝑚 be fixed. Then one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝜈,𝑃,𝑥)𝑃(𝑥)𝐿()0as𝑛.(3.31)

Proposition 3.11. Let 𝜈=2,4,6,. Let 𝑃𝒫𝑚 with 𝑃(0)=0 be fixed. Then one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑋𝑛(𝜈,𝑃;𝑥)𝑃(𝑥)𝐿()0as𝑛.(3.32)

Theorem 3.12. Let 𝜈=2,4,6,. For 𝑓(𝑥) satisfying (3.22), one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝜈,𝑓;𝑥)𝑓(𝑥)𝐿()0𝑎𝑠𝑛.(3.33)

Theorem 3.13. Let 𝜈=2,4,6,. For 𝑓(𝑥) satisfying (3.22) and (3.23), one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝑙,𝜈,𝑓;𝑥)𝑓(𝑥)𝐿()0as𝑛.(3.34)

Corollary 3.14. Let 𝜈=2,4,6,. For 𝑓(𝑥) satisfying (3.22), one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑋𝑛(𝜈,𝑓;𝑥)𝑓(𝑥)𝐿()0as𝑛.(3.35)

Theorem 3.15. Let 𝜈=2,4,6,. For 𝑓(𝑥) satisfying (3.22), (3.23) and (3.24), one has Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝑙,𝜈,𝑓𝐺;𝑥)𝑓(𝑥)𝐿()0as𝑛.(3.36)

Define 𝐼𝑛𝑘,𝐻𝑛(𝑓)=𝑘(𝑥)𝐻𝑛(𝑓;𝑥)𝑑𝑥,(3.37) where 𝐻𝑛(𝑓) equals to one of the following: 𝐿𝑛(𝜈,𝑓),𝐿𝑛𝐿(𝑙,𝜈,𝑓),𝑛(𝑙,𝜈,𝑓𝐺),𝑋𝑛(𝜈,𝑓).(3.38) One also defines 𝐼[]𝑘,𝑓=𝑘(𝑥)𝑓(𝑥)𝑑𝑥.(3.39)

Theorem 3.16. Let 𝜈=2,4,6,. Let 𝑓(𝑥) satisfy (3.22), (3.23) and (3.24). If Φ𝑘(𝑥)3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑑𝑥<,𝑛=1,2,3,,(3.40) then we have lim𝑛𝐼𝑛𝑘,𝐻𝑛[](𝑓)=𝐼𝑘,𝑓.(3.41)

For example, we can take 𝑘(𝑥) in the following way. If 𝑇(𝑥) is unbounded, we have, for Δ,1(1+|𝑥|)ΔΦ3𝜈/4(𝑥)𝑑𝑥1(1+|𝑥|)Δ1𝑇(𝑥)𝑄(𝑥)2/33𝜈/4𝑑𝑥<(3.42) (see [10, Lemma 2.1(b)]). Then we set 𝑘(𝑥)=(1+|𝑥|)𝜌𝜈ΔΦ3/2(𝑥)𝑤(𝑥)𝜈.(3.43) If 𝑇(𝑥) is bounded and 𝑤(𝑥)=exp(|𝑥|𝛽), 𝛽>1, then we take Δ as 𝜈𝛽/2+Δ>1 so that (3.43) can hold. Then 𝑘(𝑥) defined by (3.43) satisfies (3.40).

4. Proof of Theorems

For constants 𝐶,𝐶1>0, the same symbol does not necessarily denote the same constant in different occurrences.

Lemma 4.1. One has the following. (1) (See [19, Theorem 2.3]) Let 𝑤(𝑥)=exp(𝑄(𝑥))(𝐶2) and 𝜌>1/2. Then, uniformly for 𝑛1 one has sup𝑥||𝑝𝑛,𝜌(|||𝑎𝑥)𝑤(𝑥)𝑥|+𝑛𝑛𝜌||𝑥2𝑎2𝑛||1/41,(4.1) and for 𝑤(𝑥)=exp(𝑄(𝑥))(𝐶2+), sup𝑥||𝑝𝑛,𝜌(|||𝑎𝑥)𝑤(𝑥)𝑥|+𝑛𝑛𝜌𝑎𝑛1/2𝑎𝑛𝑇𝑛1/6.(4.2)
(2) (See [19, Theorem 2.5(d)]) Let 𝑤(𝐶2+) and 𝜌>1/2. Let 1𝑗𝑛1 and 𝑥[𝑥𝑗+1,𝑛,𝑥𝑗,𝑛]. Then ||𝑝𝑛(|||𝑎𝑥)𝑤(𝑥)𝑥|+𝑛𝑛𝜌||min𝑥𝑥𝑗,𝑛||,||𝑥𝑥𝑗+1,𝑛||𝜑𝑛𝑥𝑗,𝑛1||𝑎2𝑛𝑥2𝑗,𝑛||1/4.(4.3)
(3) (See [19, Theorem 2.5(c)]) Let 𝑤(𝐶2+) and 𝜌>1/2. Then one has max𝑥|||||𝑝𝑛(𝑥)𝑤(𝑥)|𝑥|+𝑎𝑛/𝑛𝜌𝑥𝑥𝑗,𝑛𝑝𝑛𝑥𝑗,𝑛𝑤𝑥𝑗,𝑛||𝑥𝑗,𝑛||+𝑎𝑛/𝑛𝜌|||||=max𝑥|||𝑙𝑗𝑛𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌|||𝑤1𝑥𝑗,𝑛||𝑥𝑗,𝑛||+𝑎𝑛𝑛𝜌1.(4.4)
(4) (See [19, Theorem 2.5(a)]) Let 𝑤(𝐶2+) and 𝜌>1/2. For 1𝑗𝑛 we have ||𝑝𝑛𝑤||𝑥𝑗,𝑛||𝑥𝑗,𝑛||+𝑎𝑛𝑛𝜌𝜑𝑛1𝑥𝑗,𝑛||𝑎2𝑛𝑥2𝑗,𝑛||1/4.(4.5)

Lemma 4.2 (see [19, Theorem 2.2]). Let 𝑤(𝑥)=exp(𝑄(𝑥))(𝐶2+) and 𝜌>1/2. For the zeros 𝑥𝑗,𝑛=𝑥𝑗,𝑛,𝜌, one has the following: (1)For 𝑛1 and 1𝑗𝑛1,𝑥𝑗,𝑛𝑥𝑗+1,𝑛𝜑𝑛𝑥𝑗,𝑛,𝜑𝑛𝑥𝑗,𝑛𝜑𝑛𝑥𝑗+1,𝑛[](see(19,LemmaA.1(𝐴.3))).(4.6)(2)For the minimum positive zero 𝑥[𝑛/2],𝑛 ([𝑛/2] is the largest integer 𝑛/2), one has𝑥[𝑛/2],𝑛𝑎𝑛𝑛1,(4.7)and for large enough 𝑛,𝑥11,𝑛𝑎𝑛𝛿𝑛.(4.8)(3) (See [19, Lemma 4.7]) 𝑏𝑛=𝛾𝑛1/𝛾𝑛𝑎𝑛𝑥1,𝑛, where 𝛾𝑛 is defined by (1.3).

Lemma 4.3. Let 𝑤(𝐶2+). Then there exist 𝐶1,𝐶2>0 such that sup𝑥||𝑝𝑛,𝜌(|||𝑎𝑥)𝑤(𝑥)𝑥|+𝑛𝑛𝜌Φ1/4(𝑥)𝐶1sup𝑥||𝑝𝑛,𝜌(|||𝑎𝑥)𝑤(𝑥)𝑥|+𝑛𝑛𝜌Φ𝑛1/4(𝑥)𝐶2𝑎𝑛1/2.(4.9)

Proof. The first inequality follows from Lemma 3.4. We show the second inequality. Noting (4.8), from Lemma 4.1 (4.1) we have 𝐶sup|𝑥|𝑥1,𝑛||𝑝𝑛,𝜌(|||𝑎𝑥)𝑤(𝑥)𝑥|+𝑛𝑛𝜌||𝑥2𝑎2𝑛||1/4sup|𝑥|𝑥1,𝑛||𝑝𝑛,𝜌||𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝑎𝑛1/2Φ𝑛1/4(𝑥).(4.10) From (4.2) we see that 𝑎𝑛1/2𝐶sup|𝑥|>𝑥1,𝑛||𝑝𝑛,𝜌(|||𝑎𝑥)𝑤(𝑥)𝑥|+𝑛𝑛𝜌𝛿𝑛1/4𝐶sup|𝑥|>𝑥1,𝑛||𝑝𝑛,𝜌||𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌Φ𝑛1/4(𝑥).(4.11) Therefore we have the result.

Proof of Proposition 3.7. We recall the definition of 𝑋𝑛(𝜈,𝑓;𝑥): 𝑋𝑛(𝜈,𝑓;𝑥)=𝑛𝑗=1𝑓𝑥𝑗,𝑛𝑙𝜈𝑗𝑛(𝑥)𝜈2𝑖=0𝑒𝑖(𝜈,𝑗,𝑛)𝑥𝑥𝑗,𝑛𝑖=𝜈2𝑛𝑖=0𝑗=1𝑓𝑥𝑗,𝑛𝑙𝜈𝑗𝑛(𝑥)𝑥𝑥𝑗,𝑛𝑖𝑒𝑖(𝜈,𝑗,𝑛).(4.12) Using Lemma 2.3, we may estimate, for 𝑖=0,1,,𝜈2 and 1𝑗𝑛, 𝐴𝑖,𝑗Φ(𝑥)=3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈||𝑓𝑥𝑗,𝑛||||𝑙𝑗𝑛||(𝑥)𝜈||𝑥𝑥𝑗,𝑛||𝑖𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖.(4.13) Let (𝑥𝑚+1,𝑛+𝑥𝑚,𝑛)/2<𝑥𝑥𝑚,𝑛 or 𝑥𝑚,𝑛𝑥<(𝑥𝑚1,𝑛+𝑥𝑚,𝑛)/2. For simplicity, we assume 𝑥>0, and let 𝑥0,𝑛=𝑥1,𝑛+𝛿𝜑𝑛(𝑥1,𝑛) for a fixed 𝛿>0 small enough. Then we can assume that there exists a constant 𝑐>0 such that 𝑥0,𝑛=𝑥1,𝑛+𝛿𝜑𝑛𝑥1,𝑛<𝑎𝑛𝑐𝛿𝑛.(4.14) Assume that 𝑥<𝑥0,𝑛. Then we first estimate 𝐴𝑖,𝑚(𝑥). By Lemma 4.1(3) and the definition of 𝜑𝑛(𝑥), we have Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈||𝑙𝑚𝑛||(𝑥)𝜈𝐶Φ3𝜈/4(𝑥)𝑤(𝑥𝑚,𝑛)||𝑥𝑚,𝑛||+𝑎𝑛𝑛𝜌𝜈,||(4.15)𝑥𝑥𝑚,𝑛||𝑖𝑛𝑎22𝑛𝑥2𝑚,𝑛𝑖𝐶𝑛𝜑𝑛𝑥𝑚,𝑛𝑎22𝑛𝑥2𝑚,𝑛𝑖𝐶||𝑥1𝑚,𝑛||/𝑎2𝑛||𝑥1𝑚,𝑛||/𝑎𝑛𝑖,(4.16) and by Remark 3.6||𝑓𝑥𝑚,𝑛||𝐶(𝑓)Φ3𝜈/4𝑥𝑚,𝑛𝑤𝑥𝑚,𝑛||𝑥𝑚,𝑛||+𝑎𝑛𝑛𝜌𝜈.(4.17) Therefore, we have 𝐴𝑖,𝑚(𝑥)𝐶(𝑓)Φ3𝜈/4(𝑥)Φ3𝜈/4𝑥𝑚,𝑛||𝑥1𝑚,𝑛||/𝑎2𝑛||𝑥1𝑚,𝑛||/𝑎𝑛𝑖=𝐶(𝑓)Φ3𝜈/4||𝑥(𝑥)max1𝑚,𝑛||𝑎𝑛,𝛿𝑛3𝜈/41|𝑥𝑚,𝑛|/𝑎2𝑛1|𝑥𝑚,𝑛|/𝑎𝑛𝑖=𝐶(𝑓)Φ3𝜈/4||𝑥(𝑥)1𝑚,𝑛||𝑎𝑛3𝜈/4𝑖/2||𝑥1𝑚,𝑛||𝑎2𝑛𝑖𝐶(𝑓).(4.18) Next, we estimate 1𝑗𝑛,𝑗𝑚𝐴𝑖,𝑗(𝑥). For 1𝑗𝑛, 𝑗𝑚, we have, by Lemma 4.3 and Lemma 4.1(4), Φ3/4(𝑥)𝑤(𝑥)|𝑥|+𝑎𝑛/𝑛𝜌𝜈||𝑙𝑗𝑛||(𝑥)𝜈||𝑥𝑥𝑗,𝑛||𝑖=Φ𝜈/2|||||𝑝(𝑥)𝑛(𝑥)Φ1/4(𝑥)𝑤(𝑥)|𝑥|+𝑎𝑛/𝑛𝜌𝑝𝑛𝑥𝑗,𝑛𝑤𝑥𝑗,𝑛||𝑥𝑗,𝑛||+𝑎𝑛/𝑛𝜌|||||𝜈𝑤𝑥𝑗,𝑛||𝑥𝑗,𝑛||+𝑎𝑛/𝑛𝜌𝜈||𝑥𝑥𝑗,𝑛||𝜈𝑖=Φ𝜈/2(𝑥)𝑎𝑛𝜈/2𝜑𝜈𝑛𝑥𝑗,𝑛||𝑎2𝑛𝑥2𝑗,𝑛||𝜈/4𝑤𝑥𝑗,𝑛||𝑥𝑗,𝑛||+𝑎𝑛/𝑛𝜌𝜈||𝑥𝑥𝑗,𝑛||𝜈𝑖.(4.19) Then, since we know from Remark 3.6 that ||𝑓𝑥𝑗,𝑛||𝐶(𝑓)Φ3𝜈/4𝑥𝑗,𝑛𝑤(𝑥𝑗,𝑛)||𝑥𝑗,𝑛||+𝑎𝑛𝑛𝜌𝜈,(4.20) we have, by Lemma 3.4, 𝑗𝑚𝐴𝑖,𝑗(𝑥)𝐶(𝑓)𝑗𝑚Φ𝑛𝜈/2(𝑥)Φ𝑛3𝜈/4𝑥𝑗,𝑛𝜑𝜈𝑛𝑥𝑗,𝑛×||𝑥1𝑗,𝑛||𝑎𝑛𝜈/41||𝑥𝑥𝑗,𝑛||𝜈𝑖𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖.(4.21) By the definition of 𝜑𝑛(𝑥) and by Lemma 3.3(a) 𝑎2𝑛𝑎𝑛, we have 𝜑𝜈𝑛𝑥𝑗,𝑛𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖𝑎𝐶𝑛𝑛𝜈𝑖||𝑥1𝑗,𝑛||𝑎2𝑛𝜈𝑖/2||𝑥1𝑗,𝑛||𝑎𝑛𝜈/2.(4.22) By Lemma 4.2(1), we have 1||𝑥𝑥𝑗,𝑛||1𝐶𝑗𝑠𝑚+1or𝑚1𝑠𝑗𝜑𝑛𝑥𝑠,𝑛𝐶𝑛/𝑎𝑛𝑗𝑠𝑚+1or𝑚1𝑠𝑗||𝑥1𝑠,𝑛||/𝑎2𝑛/1|𝑥𝑠,𝑛|/𝑎𝑛+𝛿𝑛1/2𝐶𝑛/𝑎𝑛𝑗𝑠𝑚+1or𝑚1𝑠𝑗||𝑥1𝑠,𝑛||/𝑎𝑛/||𝑥1𝑠,𝑛||/𝑎𝑛+𝛿𝑛1/2𝐶𝑛/𝑎𝑛||||||𝑥𝑚𝑗1max|𝑥|,𝑗,𝑛||/𝑎𝑛1/2.(4.23) Here, we note from (4.14) and (4.8) that Φ𝑛(𝑥)1|𝑥|𝑎𝑛,Φ𝑛𝑥𝑗,𝑛||𝑥1𝑗,𝑛||𝑎𝑛.(4.24) Thus, we have, for 𝑗𝑚, Φ𝑛𝜈/2(𝑥)Φ𝑛3𝜈/4𝑥𝑗,𝑛𝜑𝜈𝑛𝑥𝑗,𝑛||𝑥1𝑗,𝑛||𝑎𝑛𝜈/41|𝑥𝑥𝑗,𝑛|𝜈𝑖𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖𝐶1|𝑥|𝑎𝑛𝜈/21|𝑥𝑗,𝑛|𝑎𝑛𝜈/21|𝑥𝑗,𝑛|𝑎2𝑛𝜈𝑖/2×1||𝑥|𝑚𝑗|1max|𝑥|,𝑗,𝑛||/𝑎𝑛1/2𝜈𝑖1𝐶|𝑚𝑗|𝜈𝑖.(4.25) Therefore, we have 1𝑗𝑛,𝑗𝑚𝐴𝑖,𝑗(𝑥)𝐶(𝑓)𝑗𝑚1||||𝑚𝑗𝜈𝑖𝐶(𝑓),(4.26) because of 𝜈𝑖2.Remark 4.4. If we consider the estimate of 𝑛𝑖=1𝐴𝑖,𝜈1(𝑥) with (4.13), then we obtain 𝑛𝑖=1𝐴𝑖,𝜈1(𝑥)𝐶(𝑓)log𝑛.(4.27)
We continue the proof Proposition 3.7. We need to estimate 𝑛𝑗=1𝐴𝑖,𝑗(𝑥) for |𝑥|>𝑥0,𝑛. Now, suppose 𝑥>𝑥0,𝑛. Then similarly to (4.23), we have1||𝑥0,𝑛𝑥𝑗,𝑛||1𝐶1𝑠𝑗𝜑𝑛𝑥𝑠,𝑛𝐶𝑛/𝑎𝑛𝑗1𝑥0,𝑛/𝑎𝑛1/21𝐶𝑗𝛿𝑛1/2𝑛𝑎𝑛.(4.28) Similarly to (4.21), we have using (4.22) 𝐴𝑖,𝑗(𝑥)𝐶(𝑓)𝑗Φ𝜈/2(𝑥)Φ𝑛3𝜈/4𝑥𝑗,𝑛𝜑𝜈𝑛𝑥𝑗,𝑛×||𝑥1𝑗,𝑛||𝑎𝑛𝜈/41|𝑥0,𝑛𝑥𝑗,𝑛|𝜈𝑖𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖𝐶(𝑓)𝑗Φ𝑛𝜈/2||𝑥(𝑥)1𝑗,𝑛||𝑎𝑛𝜈/21|𝑥𝑗,𝑛|𝑎2𝑛𝜈𝑖/21𝑗𝛿𝑛1/2𝜈𝑖𝐶(𝑓)𝑗1𝑗𝜈𝑖𝐶(𝑓),(4.29) because of 𝜈𝑖2 and Φ𝜈/2(𝑥)𝛿𝑛(𝜈𝑖)/2𝛿𝑛𝜈/2𝛿𝑛(𝜈𝑖)/2𝐶. Consequently we achieve the result.

Remark 4.5. The above proof implies the following: there exists a constant 𝐶>0 such that 𝑛𝑗=1||𝑗,𝑛,𝜌||(𝜈;𝑥)𝑛𝑗=1||𝑙𝑗𝑛||(𝑥)𝜈𝜈2𝑖=0||𝑒𝑖||||(𝜈,𝑘,𝑛)𝑥𝑥𝑗,𝑛||𝑖𝐶,𝑥.(4.30)

Proof of Proposition 3.8. We use the same method to prove of Proposition 3.7. So, we let (𝑥𝑚+1,𝑛+𝑥𝑚,𝑛)/2<𝑥𝑥𝑚,𝑛 or 𝑥𝑚,𝑛𝑥<(𝑥𝑚1,𝑛+𝑥𝑚,𝑛)/2. For simplicity, we assume 𝑥>0, and let 𝑥0,𝑛=𝑥1,𝑛+𝛿𝜑𝑛(𝑥1,𝑛) for a fixed 𝛿>0 small enough and there exists a constant 𝛿1>0 such that 𝑥0,𝑛=𝑥1,𝑛+𝛿𝜑𝑛(𝑥1,𝑛)<𝑎𝑛𝛿1𝛿𝑛. Assume that 𝑥<𝑥0,𝑛. Since 𝑓(0)=0, we may leave out the term with 𝑥𝑗,𝑛=0. Hence we consider only the term of 𝑥𝑗,𝑛0. Noting Assumption 3.1, (3.2), and Lemma 2.7, we estimate 𝑛𝑗=1𝐵𝜈1,𝑗(𝑥), where 𝐵𝜈1,𝑗Φ(𝑥)=3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈×||𝑓𝑥𝑗,𝑛||||𝑙𝑗𝑛||(𝑥)𝜈||𝑥𝑥𝑗,𝑛||𝜈1𝑇𝑎𝑛𝑎𝑛+||𝑄𝑥𝑗,𝑛||+1||𝑥𝑗,𝑛||𝑛𝑎2𝑛||𝑥𝑗,𝑛||𝜈2.(4.31) First we estimate 𝐵𝜈1,𝑚(𝑥). By Lemma 4.2, (4.16), and the definition of 𝜑𝑛(𝑥), we have ||𝑥𝑥𝑚,𝑛||𝜈1𝑛𝑎22𝑛𝑥2𝑚,𝑛𝜈2𝐶𝜑𝑛𝑥𝑚,𝑛1|𝑥𝑚,𝑛|/𝑎2𝑛1|𝑥𝑚,𝑛|/𝑎𝑛𝜈2𝑎𝐶𝑛𝑛||𝑥1𝑚,𝑛||𝑎2𝑛1/21|𝑥𝑚,𝑛|/𝑎2𝑛1|𝑥𝑚,𝑛|/𝑎𝑛𝜈1.(4.32) Since here |𝑄(𝑥𝑚,𝑛)|+1/|𝑥𝑚,𝑛|𝐶 for some positive constant 𝐶, we know that 𝑇𝑎𝑛𝑎𝑛+||𝑄𝑥𝑚,𝑛||+1||𝑥𝑚,𝑛||𝑇𝑎𝐶max1,𝑛𝑎𝑛||𝑄𝑥𝑚,𝑛||+1||𝑥𝑚,𝑛||,(4.33) and by (3.25) ||𝑓𝑥𝑚,𝑛||𝐶(𝑓)Φ3𝜈/4𝑥𝑚,𝑛𝑤𝑥𝑚,𝑛||𝑥𝑚,𝑛||+𝑎𝑛𝑛𝜌𝜈||𝑄𝑥𝑚,𝑛||+1||𝑥𝑚,𝑛||1.(4.34) Therefore, using (3.3) and (4.15), we have 𝐵𝜈1,𝑚𝑇𝑎(𝑥)𝐶(𝑓)max1,𝑛𝑎𝑛Φ𝑛3𝜈/4(𝑥)Φ𝑛3𝜈/4𝑥𝑚,𝑛𝑎𝑛𝑛||𝑥1𝑚,𝑛||𝑎2𝑛1/2×||𝑥1𝑚,𝑛||/𝑎2𝑛||𝑥1𝑚,𝑛||/𝑎𝑛𝜈1𝐶(𝑓)𝜀𝑛Φ𝑛3𝜈/4(𝑥)Φ𝑛3𝜈/4𝑥𝑚,𝑛||𝑥1𝑚,𝑛||𝑎2𝑛1/2||𝑥1𝑚,𝑛||/𝑎2𝑛||𝑥1𝑚,𝑛||/𝑎𝑛𝜈1.(4.35) Noting (4.24), we have 𝐵𝜈1,𝑚(𝑥)𝐶(𝑓)𝜀𝑛Φ𝑛3𝜈/4||𝑥(𝑥)1𝑚,𝑛||𝑎𝑛(𝜈+2)/4||𝑥1𝑚,𝑛||𝑎2𝑛𝜈/2𝐶(𝑓)𝜀𝑛.(4.36) Next, we estimate 𝑗𝑚𝐵𝜈1,𝑗(𝑥). Noting (4.19) and (4.22), we have Φ𝑛3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈||𝑙𝑗𝑛||(𝑥)𝜈||𝑥𝑥𝑗,𝑛||𝜈1=Φ𝑛𝜈/2(𝑥)𝑎𝑛𝜈/2𝜑𝜈𝑛𝑥𝑗,𝑛||𝑎2𝑛𝑥2𝑗,𝑛||𝜈/4𝑤𝑥𝑗,𝑛||𝑥𝑗,𝑛||+𝑎𝑛/𝑛𝜌𝜈||𝑥𝑥𝑗,𝑛||,𝜑𝜈𝑛𝑥𝑗,𝑛𝑛𝑎22𝑛𝑥2𝑗,𝑛𝜈2𝑎𝐶𝑛𝑛21|𝑥𝑗,𝑛|𝑎𝑛𝜈/21|𝑥𝑗,𝑛|𝑎2𝑛𝜈/2+1.(4.37) Then by (4.33) and (3.25) (noting (4.34)), using the notation (3.3) and (4.24), we have 𝐵𝜈1,𝑗𝑇𝑎(𝑥)𝐶(𝑓)max1,𝑛𝑎𝑛𝑎𝑛𝑛2Φ𝑛𝜈/2(𝑥)Φ𝑛3𝜈/4𝑥𝑗,𝑛𝑎𝑛𝜈/2||𝑎2𝑛𝑥2𝑗,𝑛||𝜈/4×1||𝑥𝑥𝑗,𝑛||||𝑥1𝑗,𝑛||𝑎𝑛𝜈/2||𝑥1𝑗,𝑛||𝑎2𝑛𝜈/2+1𝐶(𝑓)𝜀𝑛𝑎𝑛𝑛Φ𝑛𝜈/2(𝑥)Φ𝑛3𝜈/4𝑥𝑗,𝑛||𝑥1𝑗,𝑛||𝑎𝑛𝜈/4||𝑥1𝑗,𝑛||𝑎2𝑛𝜈/2+11||𝑥𝑥𝑗,𝑛||𝐶(𝑓)𝜀𝑛𝑎𝑛𝑛1|𝑥|𝑎𝑛𝜈/2||𝑥1𝑗,𝑛||𝑎𝑛𝜈/21|𝑥𝑗,𝑛|𝑎2𝑛𝜈/2+11||𝑥𝑥𝑗,𝑛||.(4.38) Therefore, since we know from (4.23) that 1||𝑥𝑥𝑗,𝑛||𝐶𝑛/𝑎𝑛||||||𝑥𝑚𝑗1max|𝑥|,𝑗,𝑛||/𝑎𝑛1/2,(4.39) noting (4.24), we have 𝑗𝑚𝐵𝜈1,𝑗(𝑥)𝐶(𝑓)𝜀𝑛1|𝑥|𝑎𝑛𝜈/2𝑗𝑚||𝑥1𝑗,𝑛||/𝑎𝑛𝜈/2||𝑥1𝑗,𝑛||/𝑎2𝑛𝜈/2+1||||||𝑥𝑚𝑗1max|𝑥|,𝑗,𝑛||/𝑎𝑛1/2𝐶(𝑓)𝜀𝑛1|𝑥|𝑎𝑛(𝜈1)/2𝑗𝑚1|𝑥𝑗,𝑛|/𝑎𝑛(𝜈1)/2||𝑥1𝑗,𝑛||/𝑎2𝑛𝜈/2+1||||𝑚𝑗𝐶(𝑓)𝜀𝑛𝑗𝑚1||||𝑚𝑗𝐶(𝑓)𝜀𝑛log𝑛.(4.40) Finally, we estimate 𝑛𝑗=1𝐵𝜈1,𝑗(𝑥) for 𝑥>𝑥0,𝑛. Suppose 𝑥>𝑥0,𝑛. Then similar to the above computations, we have 𝐵𝜈1,𝑗(𝑥)𝐶(𝑓)𝜀𝑛𝑎𝑛𝑛Φ𝜈/2(𝑥)Φ𝑛3𝜈/4𝑥𝑗,𝑛||𝑥1𝑗,𝑛||𝑎𝑛𝜈/4||𝑥1𝑗,𝑛||𝑎2𝑛𝜈/2+11||𝑥0,𝑛𝑥𝑗,𝑛||𝐶(𝑓)𝜀𝑛𝑎𝑛𝑛Φ𝜈/2||𝑥(𝑥)1𝑗,𝑛||𝑎𝑛𝜈/2||𝑥1𝑗,𝑛||𝑎2𝑛𝜈/2+11||𝑥0,𝑛𝑥𝑗,𝑛||.(4.41) Then, since we know by (4.28) that 1||𝑥0,𝑛𝑥𝑗,𝑛||1𝐶𝑗𝛿𝑛1/2𝑛𝑎𝑛,(4.42) we have 𝐵𝜈1,𝑗(𝑥)𝐶(𝑓)𝜀𝑛Φ𝜈/2||𝑥(𝑥)1𝑗,𝑛||𝑎𝑛𝜈/2||𝑥1𝑗,𝑛||𝑎2𝑛𝜈/2+11𝑗𝛿𝑛1/2.(4.43) Then, since Φ𝜈/2(𝑥)𝛿𝑛1/2<𝐶 for 𝑥>𝑥0,𝑛, we have 𝑛𝑗=1𝐵𝜈1,𝑗(𝑥)𝐶(𝑓)𝜀𝑛𝑛𝑗=11𝑗𝐶(𝑓)𝜀𝑛log𝑛.(4.44) Therefore, the result is proved.

Proof of Proposition 3.9. By Lemma 2.3 we see that, for a constant 𝐶1>0, ||𝑍𝑛||(𝑙,𝜈,𝑓;𝑥)𝐶1𝑛𝑙𝑗=1𝑠=1||𝑓(𝑠)𝑥𝑗,𝑛||||𝑙𝑗𝑛||(𝑥)𝜈𝜈1𝑖=𝑠𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖𝑠||𝑥𝑥𝑗,𝑛||𝑖𝐶1𝑎𝑛𝑛𝑛𝑙𝑗=1𝑠=1||𝑓(𝑠)𝑥𝑗,𝑛||||𝑙𝑗𝑛(||𝑥)𝜈𝜈1𝑖=𝑠𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖||𝑥𝑥𝑗,𝑛||𝑖𝐶1𝑎𝑛𝑛𝑙𝑠=1𝜈1𝑛𝑖=0𝑗=1||𝑓(𝑠)𝑥𝑗,𝑛||||𝑙𝑗𝑛(||𝑥)𝜈||𝑥𝑥𝑗,𝑛||𝑖𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖𝑎=𝑛𝑛𝑙𝑠=1𝜈1𝑖=0𝐶𝑖,𝑠(𝑥),(4.45) where, 𝐶𝑖,𝑠(𝑥)=𝑛𝑗=1||𝑓(𝑠)𝑥𝑗,𝑛||||𝑙𝑗𝑛||(𝑥)𝜈||𝑥𝑥𝑗,𝑛||𝑖𝑛𝑎22𝑛𝑥2𝑗,𝑛𝑖.() We set 𝑋𝑖,𝑠,𝑛(𝜈,𝑓;𝑥)=𝑛𝑗=1𝑓(𝑠)𝑥𝑗,𝑛𝑙𝜈𝑗𝑛(𝑥)𝑒𝑖(𝜈,𝑗,𝑛)𝑥𝑥𝑗,𝑛𝑖,𝑖=0,1,,𝜈1,(4.46) and hereafter we wrote (*) as |𝑋|𝑖,𝑠,𝑛(𝜈,𝑓;𝑥). Now, we repeat the proof of Proposition 3.7 by exchanging 𝑓(𝑥) with 𝑓(𝑠)(𝑥), 𝑠=1,2,,𝜈1, and we note (3.23) (and (3.26)). Then, for 0𝑖𝜈2 we obtain Φ𝑛3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜈||𝑋||𝑖,𝑠,𝑛(𝜈,𝑓;𝑥)𝐶1𝐶(𝑓).(4.47) For 𝑖=𝜈1, we use the estimate for 𝑙𝑚𝑛(𝑥) in the proof of Proposition 3.7; furthermore we use Remark 4.4. Then we have Φ𝑛3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜈||𝑋||𝜈1,𝑠,𝑛(𝜈,𝑓;𝑥)𝐶1𝐶(𝑓)log𝑛.(4.48) Consequently, we have Φ𝑛(𝑥)3/4𝑎𝑤(𝑥)|𝑥|+𝑛𝑛𝜈||𝑍𝑛||(𝑙,𝜈,𝑓;𝑥)𝐶1𝑎𝐶(𝑓)𝑛log𝑛𝑛.(4.49) Similarly, we have Φ(𝑥)3/4𝑎𝑤(𝑥)|𝑥|+𝑛𝑛𝜈||𝑊𝑛||(𝑙,𝜈,𝐺;𝑥)𝐶1𝑎𝐶(𝐺)𝑛log𝑛𝑛.(4.50)

Proof of Proposition 3.10. Let 𝑃𝒫𝑚 be fixed. From Proposition 3.9 we see Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝜈,𝑃)𝑃𝐿()=Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝜈,𝑃)𝐿𝑛(𝜈1,𝜈,𝑃)𝐿()=Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑍𝑛(𝜈1,𝜈,𝑃)𝐿()0as𝑛.(4.51)

Proof of Proposition 3.11. Let 𝑃𝒫𝑚 with 𝑃(0)=0. Then 𝑃 satisfies the condition (A-1). By Proposition 3.8, we see Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑌𝑛(𝜈,𝑃)𝐿()0as𝑛.(4.52) So, from Propositions 3.10 and 3.8 (noting (3.3)) we have Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑋𝑛(𝜈,𝑃)𝑃𝐿()𝐶1Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝜈,𝑃)𝑃𝐿()+Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑌𝑛(𝜈,𝑃)𝐿()0as𝑛.(4.53)

Proof of Theorem 3.12. Since 𝑓 satisfies (3.22), we see lim|𝑥|||||𝑓(𝑥)𝑤(𝑥)𝜈𝛿=0.(4.54) For a given 𝜀>0, there exists a polynomial 𝑃𝒫𝑚 with 𝑃(0)=0 such that sup𝑥||||Φ𝑓(𝑥)𝑃(𝑥)3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈<𝜀.(4.55) In fact, by [21, Theorem 1.4], there exists a polynomial 𝑅𝒫𝑚 such that sup𝑥||𝑓||𝑤(𝑥)𝑅(𝑥)𝜈𝛿𝜀(𝑥)<2.(4.56) Let 𝑃(𝑥)=𝑅(𝑥)𝑅(0). Noting that Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐶𝑤𝜈𝛿(𝑥),𝑥forsome𝐶>0(4.57) and 𝑓(0)=0, we have sup𝑥||||Φ𝑓(𝑥)𝑃(𝑥)3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈sup𝑥||||𝑤𝑓(𝑥)𝑃(𝑥)𝜈𝛿(𝑥)sup𝑥||||𝑤𝑓(𝑥)𝑅(𝑥)𝜈𝛿||||𝑤(𝑥)+𝑓(0)𝑅(0)𝜈𝛿(0)<𝜀;(4.58) that is, we have (4.55). Here, we know that 𝐿𝑛(𝜈,𝑓)(𝑥)𝑓(𝑥)=𝑋𝑛𝑋(𝜈,𝑓𝑃)+𝑛+(𝜈,𝑃)𝑃(𝑃𝑓)+𝑌𝑛(𝜈,𝑓).(4.59) Therefore, by Propositions 3.7, 3.11, and 3.8, we have for 𝑛 large enough Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝜈,𝑓)𝑓𝐿()Φ𝐶3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑋𝑛(𝜈,𝑓𝑃)𝐿()+Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈(𝑋𝑛(𝜈,𝑃)𝑃)𝐿()+Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈(𝑃𝑓)𝐿()+Φ3/4(|𝑎𝑥)𝑤(𝑥)𝑥|+𝑛𝑛𝜌𝜈𝑌𝑛(𝜈,𝑓)𝐿()=𝐼𝑛+𝐼𝐼𝑛+𝐼𝐼𝐼𝑛+𝐼𝑉𝑛.(4.60) Here we see that, by Proposition 3.7 with 𝜀=𝐶(𝑓𝑃) (constant depending only on 𝑓𝑃) and (4.55), 𝐼𝑛𝐶𝜀,𝐼𝐼𝐼𝑛𝜀,(4.61) and for 𝑛𝑛0 large enough, we have 𝐼𝐼𝑛𝐶𝜀,(byProposition3.9),𝐼𝑉𝑛𝐶𝜀,(byProposition3.6).(4.62) Consequently, noting (3.3), we have lim𝑛𝐼𝑛+𝐼𝐼𝑛+𝐼𝐼𝐼𝑛+𝐼𝑉𝑛=0.(4.63) Then we have Theorem 3.12.

Proof of Theorem 3.13. From Theorem 3.12 and Proposition 3.9, we have Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝑙,𝜈,𝑓)𝑓𝐿()𝐶1Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝜈,𝑓)𝑓𝐿()+Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑍𝑛(𝑙,𝜈,𝑓)𝐿()0as𝑛.(4.64)

Proof of Corollary 3.14. From Theorem 3.12 and Proposition 3.8, we have Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑋𝑛(𝜈,𝑓)𝑓𝐿()𝐶1Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈(𝐿𝑛(𝜈,𝑓)𝑓)𝐿()+Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑌𝑛(𝜈,𝑓)𝐿()0as𝑛.(4.65)

Proof of Theorem 3.15. From Theorem 3.13 and Proposition 3.10 we have Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝑙,𝜈,𝑓𝐺)𝑓𝐿()Φ𝐶3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐿𝑛(𝑙,𝜈,𝑓)𝑓𝐿()+Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑊𝑛(𝑙,𝜈,𝐺)𝐿()0as𝑛.(4.66)

Proof of Theorem 3.16. We use Theorems 3.12, 3.13, and Corollary 3.14, and Theorem 3.15. Then we have||𝐼𝑛𝑘,𝐻𝑛[]||=(𝑓);𝑓𝐼𝑘,𝑓𝐻𝑘(𝑥)𝑛Φ(𝑓)(𝑥)𝑓(𝑥)𝑑𝑥𝐶3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝐻𝑛(𝑓)(𝑥)𝑓(𝑥)𝐿()×Φ3/4𝑎(𝑥)𝑤(𝑥)|𝑥|+𝑛𝑛𝜌𝜈𝑘(𝑥)𝑑𝑥0as𝑛.(4.67)

5. Divergence Theorem

If 𝜈 is a positive odd integer, then we obtain the unboundedness of 𝐿𝑛(𝜈,𝑓;𝑥). We define Λ𝑛(𝜈,)=max𝑛𝑥𝑘=1||𝑘𝑛||(𝑥).(5.1)

Theorem 5.1 (cf. [1, Theorem 2]). Let 𝜈>0 be an odd integer. Then there exists a constant 𝐶>0 and 𝑛0>0 such that for 𝑛𝑛0Λ𝑛(𝜈,)𝐶log𝑛.(5.2)

Let 𝑎<𝑏, and let us define Λ𝑛(𝜈,(𝑎,𝑏))=max𝑛𝑎𝑥𝑏𝑘=1||𝑘𝑛||(𝑥).(5.3) Then we will show that for 𝑛𝑛0Λ𝑛(𝜈,(𝑎,𝑏))𝐶log𝑛.(5.4)

Remark 5.2. For the interpolation polynomial 𝐿𝑛(𝜈,𝑓;𝑥), we can see a remarkable difference between the cases of an odd number 𝜈 and of an even number 𝜈. Let us consider any continuous function 𝑓𝐶([𝑎,𝑏]),0<𝑎<𝑏. Then we can extend 𝑓 to a continuous function 𝑓𝐶() which satisfies (3.22) and 𝑓(𝑥)=𝑓(𝑥), 𝑥[𝑎,𝑏]. Then from Theorem 3.12 for an even positive integer 𝜈, we see 𝐿𝑛𝜈,𝑓;𝑥𝑓(𝑥)𝐿([𝑎,𝑏])0as𝑛.(5.5) On the other hand, the standard argument (cf, [22, Theorem 4.3]) leads us to the following. Theorem 5.1 means that there exists a certain function 𝑓𝐶() such that 𝐿𝑛𝜈,𝑓;𝑥𝑓(𝑥)𝐿([𝑎,𝑏])0as𝑛;(5.6) that is, for 𝑓(𝑥)=𝑓(𝑥), 𝑎𝑥𝑏 we see that the interpolation polynomials 𝐿𝑛(𝜈,𝑓;𝑥) do not converge to 𝑓. We also remark that the polynomial 𝐿𝑛(𝜈,𝑓;𝑥) interpolates 𝑓𝐶[𝑎,𝑏] at only {𝑥𝑗,𝑛[𝑎,𝑏],1𝑗𝑛}.
To prove the theorem we use the following lemma.

Lemma 5.3 (see [18, Theorem 11]). For 𝑗=0,1,2,, there is a polynomial Ψ𝑗(𝑥) of degree 𝑗 such that (1)𝑗Ψ𝑗(𝜈)>0 for 𝜈=1,3,5,, and the following relation holds. Let 0<𝜀<1. Then one has an expression for (1/𝜀)(𝑎𝑛/𝑛)|𝑥𝑘,𝑛|𝜀𝑎𝑛 and 𝑠=0,1,,(𝜈1)/2: 𝑒2𝑠(𝜈,𝑘,𝑛)=(1)𝑠1(Ψ2𝑠)!𝑠(𝜈)𝛽𝑠𝑛(𝑛,𝑘)𝑎𝑛2𝑠1+𝜂𝑘𝑛(𝜈,𝑠),(5.7) where for 𝛽𝑠(𝑛,𝑘), 𝑛=1,2,3,, 𝑘=1,2,,𝑛, 𝑠=0,1,,(𝜈1)/2, there exist the constants 𝐶1,𝐶2 such that 0<𝐶1𝛽𝑠(𝑛,𝑘)𝐶2,(5.8) and 𝜂𝑘𝑛(𝜈,𝑠) satisfies ||𝜂𝑘𝑛||(𝜈,𝑠)𝜀𝑛,𝜀𝑛=𝜀𝑛(𝜀)0as𝜀0,(5.9) for 𝑘 with (1/𝜀)(𝑎𝑛/𝑛)|𝑥𝑘,𝑛|𝜀𝑎𝑛, and for 𝑠=0,1,2,.

Proof of Theorem 5.1. To get a lower bound of Λ𝑛(𝜈,), it suffices to consider a lower bound (5.4) of Λ𝑛(𝜈,[𝑎,𝑏]) with 0<𝑎<𝑏<. Let 𝑐=𝑎/2,𝑑=2𝑏𝑎 and we consider the intervals 𝐼=[𝑎,𝑏],𝐽=[𝑐,𝑑]. If we consider 𝑛 large enough, then we have (1/𝜀)(𝑎𝑛/𝑛)𝑐<2𝑏𝑎𝜀𝑎𝑛. See the expression ||𝑘𝑛|||||𝑙(𝑥)𝜈𝑘𝑛(𝑥)𝑒𝜈1(𝜈,𝑘,𝑛)𝑥𝑥𝑘,𝑛𝜈1||||||||𝑙𝜈𝑘𝑛(𝑥)𝜈2𝑖=0𝑒𝑖(𝜈,𝑘,𝑛)𝑥𝑥𝑘,𝑛𝑖|||||.(5.10) Then we have Λ𝑛[](𝜈,𝑎,𝑏)max𝑥𝐼𝑥𝑘𝑛𝐽|||𝑙𝜈𝑘𝑛(𝑥)𝑒𝜈1(𝜈,𝑘,𝑛)𝑥𝑥𝑘,𝑛𝜈1|||max𝑥𝐼𝑥𝑘𝑛𝐽|||||𝑙𝜈𝑘𝑛(𝑥)𝜈2𝑖=0𝑒𝑖(𝜈,𝑘,𝑛)𝑥𝑥𝑘,𝑛𝑖|||||=max𝑥𝐼𝐹𝑛(𝑥)max𝑥𝐼𝐺𝑛(𝑥).(5.11) It follows from Remark 4.5 that max𝑎𝑥𝑏𝐺𝑛(𝑥)𝐶. Hence, it is enough to show that max𝑥𝐼𝐹𝑛(𝑥)𝐶log𝑛. Let 𝑥𝑘+1,𝑛,𝑥𝑘,𝑛𝐽; then by Lemma 4.2 and the definition of 𝜑𝑛(𝑥𝑘,𝑛) there exists 0<𝛼𝛽< such that 𝛼𝑎𝑛𝑛||𝑥𝑘,𝑛𝑥𝑘+1,𝑛||𝑎𝛽𝑛𝑛.(5.12) For 𝑥𝐼 we consider only 𝑥𝑘,𝑛𝐽 such that, for some positive integer 𝑗𝑘, 𝑗𝑘𝛼𝑎1𝑛𝑛||𝑥𝑘,𝑛||𝑥𝑗𝑘𝛽𝑎𝑛𝑛.(5.13) Then for each 𝑥𝐼 we define 𝑗Γ(𝑥)=𝑘;𝑥𝑘,𝑛𝑗𝐽,𝑘𝛼𝑎1𝑛𝑛||𝑥𝑘,𝑛||𝑥𝑗𝑘𝛽𝑎𝑛𝑛.(5.14) Here, we will see that 𝑗;1𝑗𝑑𝑐𝑛2𝛽𝑎𝑛1Γ(𝑥).(5.15) Let 𝑥𝑚+1,𝑛<𝑥𝑥𝑚,𝑛,𝑥𝑘(𝑐)+1,𝑛<𝑐𝑥𝑘(𝑐),𝑛,𝑥𝑘(𝑑),𝑛𝑑<𝑥𝑘(𝑑)1,𝑛.(5.16) Then we have 𝑥𝑥𝑚+1,𝑛𝑥𝑚,𝑛𝑥𝑚+1,𝑛𝑎𝛽𝑛𝑛,𝑥𝑥𝑚+2,𝑛𝑥𝑚,𝑛𝑥𝑚+2,𝑛𝑎2𝛽𝑛𝑛,𝑥𝑥𝑘(𝑐),𝑛𝑥𝑚,𝑛𝑥𝑘(𝑐),𝑛𝑎𝑗(𝑐)𝛽𝑛𝑛,𝑥𝑚,𝑛𝑥𝑥𝑚,𝑛𝑥𝑚+1,𝑛𝑎𝛽𝑛𝑛,𝑥𝑚1,𝑛𝑥𝑥𝑚1,𝑛𝑥𝑚+1,𝑛𝑎2𝛽𝑛𝑛,𝑥𝑘(𝑑),𝑛𝑥𝑥𝑘(𝑑),𝑛𝑥𝑚+1,𝑛𝑎𝑗(𝑑)𝛽𝑛𝑛,(5.17) where 𝑗(𝑐) and 𝑗(𝑑) are integers. On the other hand, 𝑥𝑘(𝑑),𝑛𝑥𝑘(𝑐),𝑛𝛽𝑎𝑛/𝑛𝑑𝑐2𝛽𝑎𝑛/𝑛𝛽𝑎𝑛=/𝑛𝑑𝑐𝛽𝑛𝑎𝑛2.(5.18) Therefore, we have 1max(𝑗(𝑐),𝑗(𝑑))2𝑑𝑐𝛽𝑛𝑎𝑛=2𝑑𝑐𝑛2𝛽𝑎𝑛1.(5.19) Now, we take a positive integer 𝑁(𝑛) such that 𝑁(𝑛)𝑑𝑐𝑛2𝛽𝑎𝑛1<𝑁(𝑛)+1.(5.20) Consequently, we have the following. By Lemmas 4.2(1), Lemma 4.1(1), (2), (4), and Lemma 2.3, we have 𝐹𝑛(𝑥)=𝑥𝑘,𝑛𝐽||𝑙𝑘𝑛||(𝑥)𝜈||𝑒𝜈1||||𝑥(𝜈,𝑘,𝑛)𝑘,𝑛||𝑥𝜈1=𝑥𝑘,𝑛𝐽||𝑝𝑛||𝑤(𝑥)𝜌(𝑥)||𝑥𝑥𝑘,𝑛||||𝑝𝑛𝑥𝑘,𝑛||𝑤𝜌𝑥𝑘,𝑛𝑤𝜌𝑥𝑘,𝑛𝑤𝜌(𝑥)𝜈||𝑒𝜈1||||(𝜈,𝑘,𝑛)𝑥𝑥𝑘,𝑛||𝜈1=𝑥𝑘,𝑛𝐽||𝑝𝑛||𝑤(𝑥)𝜌(𝑥)||𝑝𝑛𝑥𝑘,𝑛||𝑤𝜌𝑥𝑘,𝑛𝑤𝜌𝑥𝑘,𝑛𝑤𝜌(𝑥)𝜈||𝑒𝜈1||1(𝜈,𝑘,𝑛)||𝑥𝑥𝑘,𝑛||𝐶𝑗𝑘Γ(𝑥)𝑎𝑛1/2𝑛/𝑎𝑛𝑎𝑛1/2𝑤𝜌(𝑑)𝑤𝜌(𝑎)𝜈||𝑒𝜈1||𝑛(𝜈,𝑘,𝑛)𝑗𝑘𝛽𝑎𝑛𝐶𝑗𝑘Γ(𝑥)1𝑗𝑘𝑎𝑛𝑛𝜈1||𝑒𝜈1||.(𝜈,𝑘,𝑛)(5.21) Here, using Lemma 5.3 and (5.15), we have 𝐹𝑛(𝑥)𝐶𝑗𝑘Γ(𝑥)1𝑗𝑘𝑎𝑛𝑛𝜈1𝑛𝑎𝑛𝜈1𝐶1𝑗𝑁(𝑛)1𝑗.(5.22) Here, there exists 0<𝜂<1 such that 𝑛𝜂𝑁(𝑛). Therefore we see 𝐹𝑛(𝑥)𝐶1𝑗𝑛𝜂1𝑗𝐶log𝑛.(5.23) So we have (5.4), and consequently the proof of Theorem 5.1 is completed.

Acknowledgment

The authors thank the referees for many kind suggestions and comments.