Table of Contents
ISRN Endocrinology
Volume 2012, Article ID 910905, 5 pages
http://dx.doi.org/10.5402/2012/910905
Clinical Study

Steroid-Induced Diabetes: Is It Just Unmasking of Type 2 Diabetes?

1Department of Endocrinology, Diabetes Centre, Royal Prince Alfred Hospital, Level 6, West Wing, Camperdown, NSW 2050, Australia
2Sydney Medical School, The University of Sydney, D06, Sydney, NSW 2006, Australia

Received 6 March 2012; Accepted 29 April 2012

Academic Editors: G. Garruti and G. F. Wagner

Copyright © 2012 Lisa R. Simmons et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Pagano, P. Cavallo-Perin, M. Cassader et al., “An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects,” Journal of Clinical Investigation, vol. 72, no. 5, pp. 1814–1820, 1983. View at Google Scholar · View at Scopus
  2. D. L. Trence, “Management of patients on chronic glucocorticoid therapy: an endocrine perspective,” Primary Care, vol. 30, no. 3, pp. 593–605, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Braithewaite, W. G. Barr, and J. D. Thomas, “Diabetes management during glucocorticoid therapy for nonendocrine disease,” Endocrine Practice, vol. 2, no. 5, pp. 320–325, 1996. View at Google Scholar
  4. M. B. Miller and J. Neilson, “Clinical features of the diabetic syndrome appearing after steroid therapy,” Postgraduate Medical Journal, vol. 40, no. 469, pp. 660–669, 1964. View at Google Scholar
  5. I. B. Hirsch and D. S. Paauw, “Diabetes management in special situations,” Endocrinology and Metabolism Clinics of North America, vol. 26, no. 3, pp. 631–645, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Ingle, “The production of glycosuria in the normal rat by means of 17-hydroxy-dehydroxycorticosterone,” Endocrinology, vol. 29, pp. 649–657, 1941. View at Google Scholar
  7. D. J. Ingle, D. F. Beary, and A. Purmalis, “Some further observations on steroid diabetes in the rat,” Acta endocrinologica, vol. 15, no. 2, pp. 129–132, 1954. View at Google Scholar · View at Scopus
  8. D. J. Ingle, H. A. Winter, C. H. Li, and H. M. Evans, “Production of glycosuria in normal rats by means of adrenocorticotrophic hormone,” Science, vol. 101, no. 2635, pp. 671–672, 1945. View at Google Scholar · View at Scopus
  9. M. Hollingdal, C. B. Juhl, R. Dall et al., “Glucocorticoid induced insulin resistance impairs basal but not glucose entrained high-frequency insulin pulsatility in humans,” Diabetologia, vol. 45, no. 1, pp. 49–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lambillotte, P. Gilon, and J. C. Henquin, “Direct glucocorticoid inhibition of insulin secretion: an in vitro study of dexamethasone effects in mouse islets,” Journal of Clinical Investigation, vol. 99, no. 3, pp. 414–423, 1997. View at Google Scholar · View at Scopus
  11. S. Clement, S. S. Braithwaite, and M. F. Magee, “Management of diabetes and hyperglycemia in hospitals,” Diabetes Care, vol. 27, no. 2, pp. 553–591, 2004. View at Google Scholar
  12. J. J. Bookman, S. R. Drachman, L. E. Schaefer, and D. Adlersberg, “Steroid diabetes in man; the development of diabetes during treatment with cortisone and corticotropin,” Diabetes, vol. 2, no. 2, pp. 100–111, 1953. View at Google Scholar
  13. T. G. Valderhaug, J. Hjelmesæth, H. Rollag et al., “Reduced incidence of new-onset posttransplantation diabetes mellitus during the last decade,” Transplantation, vol. 84, no. 9, pp. 1125–1130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. D. Bloom and M. F. Crutchlow, “New-onset diabetes mellitus in the kidney recipient: diagnosis and management strategies,” Clinical Journal of the American Society of Nephrology, vol. 3, supplement 2, pp. S38–S48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Marchetti, “New-onset diabetes after liver transplantation: from pathogenesis to management,” Liver Transplantation, vol. 11, no. 6, pp. 612–620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Giannarelli, A. Coppelli, U. Boggi et al., “New-onset diabetes after kidney transplantation,” Diabetic Medicine, vol. 22, no. 8, pp. 1125–1126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Hoogwerf and R. D. Danese, “Drug selection and the management of corticosteroid-related diabetes mellitus,” Rheumatic Disease Clinics of North America, vol. 25, no. 3, pp. 489–505, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Chadban, “New-onset diabetes after transplantation—should it be a factor in choosing an immunosuppressant regimen for kidney transplant recipients,” Nephrology Dialysis Transplantation, vol. 23, no. 6, pp. 1816–1818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. N. Clore and L. Thurby-Hay, “Glucocorticoid-induced hyperglycemia,” Endocrine Practice, vol. 15, no. 5, pp. 469–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. S. Levetan and M. F. Magee, “Hospital management of diabetes,” Endocrinology and Metabolism Clinics of North America, vol. 29, no. 4, pp. 745–770, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. Ariza-Andraca, L. A. Barile-Fabris, A. C. Frati-Munari, and P. Baltazar-Montufar, “Risk factors for steroid diabetes in rheumatic patients,” Archives of Medical Research, vol. 29, no. 3, pp. 259–262, 1998. View at Google Scholar · View at Scopus
  22. T. Iwamoto, Y. Kagawa, Y. Naito, S. Kuzuhara, and M. Kojima, “Steroid-induced diabetes mellitus and related risk factors in patients with neurologic diseases,” Pharmacotherapy, vol. 24, no. 4, pp. 508–514, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Arner, R. Gunnarsson, S. Blomdahl, and C. G. Groth, “Some characteristics of steroid diabetes: a study in renal-transplant recipients receiving high-dose corticosteroid therapy,” Diabetes Care, vol. 6, no. 1, pp. 23–25, 1983. View at Google Scholar · View at Scopus
  24. D. Roth, M. Milgrom, V. Esquenazi, L. Fuller, G. Burke, and J. Miller, “Posttransplant hyperglycemia. Increased incidence in cyclosporine-treated renal allograft recipients,” Transplantation, vol. 47, no. 2, pp. 278–281, 1989. View at Google Scholar · View at Scopus
  25. N. B. Sumrani, V. Delaney, Z. K. Ding et al., “Diabetes mellitus after renal transplantation in the cyclosporine era—an analysis of risk factors,” Transplantation, vol. 51, no. 2, pp. 343–347, 1991. View at Google Scholar · View at Scopus
  26. L. Vesco, M. Busson, J. Bedrossian, M. O. Bitker, C. Hiesse, and P. Lang, “Diabetes mellitus after renal transplantation: characteristics, outcome, and risk factors,” Transplantation, vol. 61, no. 10, pp. 1475–1478, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Gurwitz, R. L. Bohn, R. J. Glynn, M. Monane, H. Mogun, and J. Avorn, “Glucocorticoids and the risk for initiation of hypoglycemic therapy,” Archives of Internal Medicine, vol. 154, no. 1, pp. 97–101, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Kern, E. F. Stange, H. L. Fehm, and H. H. Klein, “Glucocorticoid-induced diabetes mellitus in gastrointestinal diseases,” Zeitschrift fur Gastroenterologie, supplement 1, pp. 36–42, 1999. View at Google Scholar · View at Scopus
  29. American Diabetes Association, “Standards of medical care in diabetes—2009,” Diabetes Care, vol. 32, supplement 1, pp. S13–S61, 2009. View at Google Scholar
  30. M. L. McGill, D. K. Yue, and J. R. Turtle, “A single visit diabetes complication assessment service: a complement to diabetes management at the primary care level,” Diabetic Medicine, vol. 10, no. 4, pp. 366–370, 1993. View at Google Scholar · View at Scopus
  31. K. G. Alberti and P. Z. Zimmet, “Definition, diagnosis and classification of diabetes mellitus and its complications, part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation,” Diabetic Medicine, vol. 15, no. 7, pp. 539–533, 1998. View at Google Scholar
  32. G. Marchesini, G. Forlani, F. Cerrelli et al., “WHO and ATPIII proposals for the definition of the metabolic syndrome in patients with Type 2 diabetes,” Diabetic Medicine, vol. 21, no. 4, pp. 383–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. L. Trence and I. B. Hirsch, “Hyperglycemic crises in diabetes mellitus type 2,” Endocrinology and Metabolism Clinics of North America, vol. 30, no. 4, pp. 817–831, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. A. J. Cameron, D. W. Dunstan, N. Owen et al., “Health and mortality consequences of abdominal obesity: evidence from the AusDiab study,” Medical Journal of Australia, vol. 191, no. 4, pp. 202–208, 2009. View at Google Scholar · View at Scopus
  35. A. J. Cameron and P. Z. Zimmet, “Expanding evidence for the multiple dangers of epidemic abdominal obesity,” Circulation, vol. 117, no. 13, pp. 1624–1626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Sung, J. Y. Oh, N. H. Kyung, and Y. J. Jang, “Impaired insulin secretion in subjects with impaired glucose tolerance; role of family history of type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 50, supplement 1, p. 103, 2000. View at Google Scholar
  37. J. N. Wei, H. Y. Li, Y. C. Wang et al., “Detailed family history of diabetes identified children at risk of type 2 diabetes: a population-based case-control study,” Pediatric Diabetes, vol. 11, no. 4, pp. 258–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Chen, D. C. Rennie, and J. A. Dosman, “Synergy of BMI and family history on diabetes: the humboldt study,” Public Health Nutrition, vol. 13, no. 4, pp. 461–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Hariri, P. W. Yoon, R. Moonesinghe, R. Valdez, and M. J. Khoury, “Evaluation of family history as a risk factor and screening tool for detecting undiagnosed diabetes in a nationally representative survey population,” Genetics in Medicine, vol. 8, no. 12, pp. 752–759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, “Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy,” The New England Journal of Medicine, vol. 342, no. 6, pp. 381–389, 2000. View at Google Scholar
  41. E. M. Kohner, “Microvascular disease: what does the UKPDS tell us about diabetic retinopathy?” Diabetic Medicine, vol. 25, supplement 2, pp. 20–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Genuth, “The UKPDS and its global impact,” Diabetic Medicine, vol. 25, supplement 2, pp. 57–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. R. N. Frank, “Diabetic retinopathy,” The New England Journal of Medicine, vol. 350, no. 1, pp. 48–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. Q. Mohamed, M. C. Gillies, and T. Y. Wong, “Management of diabetic retinopathy: a systematic review,” Journal of the American Medical Association, vol. 298, no. 8, pp. 902–916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. D. S. Fong, L. P. Aiello, F. L. Ferris III, and R. Klein, “Diabetic retinopathy,” Diabetes Care, vol. 27, no. 10, pp. 2540–2553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Klein, B. E. Klein, S. E. Moss, M. D. Davis, and D. L. DeMets, “The wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years,” Archives of Ophthalmology, vol. 102, no. 4, pp. 527–532, 1984. View at Google Scholar · View at Scopus
  47. R. Klein, B. E. Klein, S. E. Moss, M. D. Davis, and D. L. DeMets, “The wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years,” Archives of Ophthalmology, vol. 102, no. 4, pp. 520–526, 1984. View at Google Scholar · View at Scopus
  48. UKPDS Study Group, “Complications in newly diagnosed type 2 diabetic patients and their association with different clinical and biochemical risk factors. UKPDS Study 6,” Diabetes Research, vol. 13, no. 1, pp. 1–11, 1990. View at Google Scholar
  49. Y. Ohkubo, H. Kishikawa, E. Araki et al., “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Research and Clinical Practice, vol. 28, no. 2, pp. 103–117, 1995. View at Publisher · View at Google Scholar · View at Scopus
  50. UK Prospective Diabetes Study Group, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. H. A. Keenan, T. Costacou, J. K. Sun et al., “Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration: the 50-year medalist study,” Diabetes Care, vol. 30, no. 8, pp. 1995–1997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. Diabetes Prevention Program Research Group, “The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the diabetes prevention program,” Diabetic Medicine, vol. 24, no. 2, pp. 137–144, 2007. View at Publisher · View at Google Scholar · View at Scopus