Table of Contents
ISRN Spectroscopy
Volume 2012, Article ID 918093, 7 pages
http://dx.doi.org/10.5402/2012/918093
Research Article

A Novel Solid Substrate Room Temperature Phosphorimetry for the Determination of Trace Cytochrome C and Forecast of Human Diseases

1Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
2Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou 363000, China
3Department of Food Safety Verification, Fujian Provincial Bureau of Quality and Technical Supervision, Zhangzhou 363000, China
4Department of Biochemistry, Fujian Education College, Fuzhou 350001, China

Received 29 August 2012; Accepted 11 November 2012

Academic Editors: C. Alvarez-Lorenzo, D. V. Konarev, and A. R. Türker

Copyright © 2012 Zhi-Yong Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. M. Fang, M. Z. Chen, R. L. Chen, and Z. L. Ye, “Effect of cytochrome C on HL-60 cell apoptosis and its relationship with the relevant genes bcl-2 and bax,” Experimental Hematology, vol. 13, no. 4, pp. 570–574, 2005. View at Google Scholar · View at Scopus
  2. D. Wang and Y. F. Liu, “Progress of cytochrome C and apoptosis,” Chinese Children With Blood, vol. 9, pp. 181–184, 2004. View at Google Scholar
  3. J. Chou, X. G. Qu, T. Lu, S. J. Dong, and Y. Wu, “Determination of cytochrome C by synchronous fluorescence spectroscopy,” Chinese Journal of Analytical Chemistry, vol. 22, pp. 1238–1240, 1994. View at Google Scholar
  4. W. Yan, A. M. Zeng, and H. S. Wang, “Resonance rayleigh scattering spectrometric determination of cytochrome C by its reaction with CdTe/CdS quantum dots,” Phys/Chem Testing, vol. 44, pp. 107–111, 2008. View at Google Scholar
  5. L. B. Qu, J. H. Zhao, J. J. Li, and R. Yang, “Determination of cytochrome C by voltammetric method using luteolin as electrochemical probe,” Journal of Chinese Pharmaceutical, vol. 38, pp. 656–658, 2007. View at Google Scholar
  6. H. L. Li, X. Q. Wu, Y. Wei, R. Wang, and X. W. Cao, “The electrochemical behaviors of cytochrome C at gold electrode modified with 2-aminoethanethiol self assembly monolayer,” Journal of Shanghai Normal University, vol. 35, pp. 52–55, 2006. View at Google Scholar
  7. Y. J. Yin, Y. F. Lv, P. Wu, P. Du, Y. M. Shi, and C. X. Cai, “Immobilization of cytochrome C on the surface of single-wall carbon nanotube and its direct electron transfer and electrocatalysis,” Electrochem, vol. 12, pp. 299–303, 2006. View at Google Scholar
  8. M. Zhu, G. Y. Shi, M. Liu, and L. T. Jin, “Study of gold colloid monolayer modified carbon fiber ultramicroelectrode and its application in determination of cytochrome C,” Journal of East China Normal University, vol. 1, pp. 68–73, 2003. View at Google Scholar
  9. V. M. Leonardo and R. O. Margarita, “Capillary zone electrophoretic determination of cytochrome c in mitochondrial extracts and cytosolic fractions: application to a digitalis intoxication study,” Talanta, vol. 74, no. 4, pp. 478–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. N. Tan and L. Hua, “Amperometric detection of cytochrome C by capillary electrophoresis at a sol-gel carbon composite electrode,” Analytica Chimica Acta, vol. 450, pp. 263–267, 2001. View at Google Scholar
  11. J. Huang, X. C. Mo, and H. M. Li, “Determination on cytochrome C in various tissues of mice by western-blotting,” Journal of Guiyang Medical College, vol. 1, pp. 48–50, 2006. View at Google Scholar
  12. H. Liu, F. L. Wang, and J. Li, “An experimental study on the cytochrome C changes of brainstem neuron after rat death due to acute brainstem injury,” Chinese Journal of Forensic Medicine, vol. 21, no. 4, pp. 212–214, 2006. View at Google Scholar · View at Scopus
  13. E. Nakamura and H. Isobe, “Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience,” Accounts of Chemical Research, vol. 36, no. 11, pp. 807–815, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Takaguchi, T. Tajima, and K. Ohta, “Reversible binding of C60 to an anthracene bearing a dendritic poly.amidoamine. substituent to give a water-soluble fullerodendrimer,” Angewandte Chemie, vol. 41, pp. 817–819, 2002. View at Google Scholar
  15. Y. Liu, H. Wang, P. Liang, and H. Y. Zhang, “Water-soluble supramolecular fullerene assembly mediated by metallobridged β-cyclodextrins,” Angewandte Chemie, vol. 43, no. 20, pp. 2690–2694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Q. Yan, J. L. Qiao, L. Lu, Y. H. Wei, W. J. Jin, and B. S. Xu, “Fluorescence properties of water-soluble fullerols and interaction with various metallic ions,” Spectroscopy and Spectral Analysis, vol. 22, no. 2, pp. 289–291, 2002. View at Google Scholar · View at Scopus
  17. J. M. Lin, F. Gao, H. H. Huang et al., “Determination of trace alkaline phosphatase by solid-substrate room-temperature phosphorimetry based on triticum vulgare lectin labeled with Fullerenol,” Chemistry and Biodiversity, vol. 5, no. 4, pp. 606–616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Liu, X. M. Huang, Z. B. Liu et al., “Exploitation of phosphorescent labelling reagent of fullerol-fluorescein isothiocyanate and new method for the determination of trace alkaline phosphatase as well as forecast of human diseases,” Analytica Chimica Acta, vol. 648, no. 2, pp. 226–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Liu, H. X. Wang, L. H. Zhang et al., “Fullerol-fluorescein isothiocyanate phosphorescent labeling reagent for the determination of glucose and alkaline phosphatase,” Analytical Biochemistry, vol. 404, no. 2, pp. 223–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Liu, F. Gao, T. L. Yang, J. H. Lai, and Z. M. Li, “Catalytic solid substrate-room temperature phosphorimetry for the determination of trace As(V) based on oxidising reaction between hydrogen peroxide and fullerenol using tween-80 as sensitizer,” International Journal of Environmental Analytical Chemistry, vol. 88, no. 9, pp. 613–624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Liu, X. J. Cui, F. Gao et al., “Solid substrate-room temperature phosphorescence method for the determination of trace Mn(II) based on oxidizing reaction of hydrogen peroxide using α,α′-bipyridine as sensitizer,” Journal of Fluorescence, vol. 17, no. 1, pp. 49–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Liu, L. P. Lin, X. X. Wang et al., “Highly sensitive detection of residual chlorpromazine hydrochloride with solid substrate Room temperature phosphorimetry,” Journal of Fluorescence, vol. 22, pp. 1087–1094, 2012. View at Google Scholar
  23. J. M. Liu, L. P. Lin, X. X. Wang, W. L. Cai, L. H. Zhang, and S. Q. Lin, “A highly sensitive coupling technique for the determination of trace quercetin based on solid substrate room temperature phosphorimetry and poly (vinyl alcohol) complex imprinting,” Analytica Chimica Acta, vol. 723, pp. 76–82, 2012. View at Google Scholar
  24. J. M. Liu, L. P. Lin, H. X. Wang et al., “Catalytic solid substrate room temperature phosphorimetry for the determination of trace rhamnose based on its condensation reaction with calcein,” Spectrochimica Acta A, vol. 84, pp. 221–226, 2011. View at Google Scholar
  25. J. M. Liu, S. Q. Lin, X. Lin, and L. Q. Zeng, “Determination of trace carvedilol by solid substrate-room temperature phosphorimetry, based on its activating effect on hypochlorite-oxidizing amaranth using sodium dodecyl benzene sulphonate as sensitizer,” Luminescence, vol. 26, pp. 734–740, 2011. View at Google Scholar
  26. D. Y. Sun, Z. Y. Liu, X. H. Guo, Y. M. Yu, Y. Zhou, and S. Y. Liu, “Convenient preparation and properties of C60.OH.x,” Chemical Journal of Chinese Universities, vol. 17, pp. 19–20, 1999. View at Google Scholar
  27. J. Luo, L. L. Wu, J. T. Wu, S. H. Huang, and Z. H. Lin, “Effects of pH, ligand CN-, metallic Ions Hg2+, Cd2+ and Pb2+ on electroactivity of cytochrome C,” Electrochem, vol. 2, pp. 61–65, 1996. View at Google Scholar
  28. N. Kavathia, A. Jain, J. Walston, B. A. Beamer, and N. S. Fedarko, “Serum markers of apoptosis decrease with age and cancer stage,” Aging, vol. 1, no. 7, pp. 652–663, 2009. View at Google Scholar · View at Scopus
  29. T. L. Yang, Z. B. Liu, J. M. Liu et al., “Solid substrate-room temperature phosphorimetry for the determination of trace lead using p-nitro-phenyl-fluorone-multi-wall carbon nanotubes-Tween-80 micellae compound and diagnosis about human diseases,” Spectrochimica Acta A, vol. 72, no. 1, pp. 156–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. L. Xu and H. Y. Yao, “Study on the interaction mechanism between tween-80 and liposome membrane,” Journal of Xi'an Shiyou University, vol. 20, no. 6, pp. 45–49, 2005. View at Google Scholar · View at Scopus